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A GENERAL-PURPOSE, PACKED-BED MODEL FOR ANALYSIS OF
UNDERGROUND COAL GASIFICATION PROCESSES*

ABSTRACT

A computer model for characterizing reacting flows through packed beds is
presented. These flows are related to the underground coal gasification
conditions in terms of combustion and multi-component chemical reactions that
take place inside beds of coal char. Time-dependent, two-dimensional
(including axisymmetrical) partial differential equations (PDE's) describing
conservation of mass, species, momentum, and the thermal energy are
formulated. These PDE's are then recast into a set of ordinary differential
equations (ODE's) with time as independent variable. The resulting ODE's are
solved by applying a method-of-1ines (MOL) technique to multi-component flows
through packed char beds. The present formulation considers: the transport
phenomena at the wall; various transient flow cases; multiple reactions and
species; a wide range of options on the boundary conditions: temperature-
dependent physical parameters; and rezoning capabilities. A numerical code
called GSF has been developed, and computer runs have been performed to verify
various aspects of the physical models as well as the numerical approach taken
in the present analysis. These include favorable agreements with available
analytical solutions for simple, one-dimensional flows and two-dimensional
non-isotropic heat transfer to a wall. For more complicated flow situations
for which there are no analytical solutions, good agreements have also been
obtained between the results of the present method and those of alternative
numerical methods.

The code has been applied to several physical situations bearing on the
underground coal gasification processes, i.e., wall drying, wall regression
during gasification, and water injection into a gasifying bed. Preliminary
results demonstrate that the present numerical modeling approach shows promise
as a first step in describing the transient thermophysical phenomena taking
place inside packed beds.
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I. INTRODUCTION

The impetus for this work stems from the desire to better understand the
underground coal gasification processes. Since a significant portion of the
processes takes place inside a packed bed, our motivation is to develop a
mathematical/computer model to analyze the physics of the flow phenomena in
general, and to determine in particular how such parameters as gas composition
and coal consumption are influenced by changes occurring in this stage of the
underground system. The present model is intended also to be applicable to
the wall-growth problem to help identify dominant physical factors during
interaction between the virgin coal in the wall and the cavity rubble bed.
Detailed descriptions of the wall-growth process will be useful in
interpreting the data to be obtained from our proposed large, laboratory-scale
experiments (one-fifth field scale).

A major physical process occurring inside a packed-bed is interaction between
flowing gas and solid particles constitutes. Several transport phenomena are
involved in this interaction; (1) the gas-phase reactants move to the particle
surfaces, react with them, the resultant products then move back into the gas
stream; (2) purely gas-phase reactions may occur when combustible gas comes in
contact with injected oxygen; (3) heat energy within the bed moves from hotter
zones to cooler ones (e.g., from combustion zones to wall areas).

Literature survey reveals that much past work on packed-bed flow dealt mainly
with some specific aspects of the problem. While this enabled them to make
simplifying assumptions, often affording them very economic solution schemes,
it also limited their adaptability to more generalized models. For example,
past packed-bed models, such as those of Thorsness et al.(1978) and of Gunn
and Whitman (1976), treat one dimensional, steady fliow, and are not readily
extendable to transient, two dimensional situations. One dimensional,
transient case has been treated by Johnson and Hindmarsh (1983), whose results
gave good agreement with the quasi-steady model results for oil-shale problems,
in some cases even reducing the computation times. As for the gasification
processes, the surface phenomena have been investigated by Denn et al.(1982).
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Their model is primarily for a steady-state operation and does not consider

truly time-dependent, two-dimensional gas flow. However, their basic scheme
of dealing with the heterogeneous gas-solid reactions is appropriate for our
purposes, and we will adopt that aspect of their method in our present model.

Our approach in characterizing the various physico-chemical processes taking
place inside packed beds is to develop a single, generalized mathematical/
computer model. The advantages of a single model are; (1) it does not have to
introduce simplifying assumptions to address a variety of questions; and (2)
it can serve as a test bed for introducing approximations to be used by more
comprehensive models. The mathematical model should be based on a fundamental
description of the processes occurring in packed beds, especially the ability
to describe the solid-phase motion. The proposed model also should be capable
of handling various time scales associated with important phenomena, including
ignition, changes in injection composition, tracer injection, and burnout of
the bed.

With these considerations, a preliminary mathematical/computer model was
developed by Thorsness and Kang (1984), and yielded promising results. In the
present report, we describe further work performed on the model, including
model improvements and partial verification runs. 1In particular, we have made
improvements in the following areas: better wall transport model, axisymmetric
geometry, more reactions and species (8 reactions, up to 7 species), more
options on boundary conditions, rezoning capability, injection of fluid or
heat anywhere in the bed, and temperature-dependent physical parameters.

Details of these new developments are given in subsequent sections.
Conservation equations, various chemical reactions, transport properties, and
boundary conditions are given in Section II, followed by the method of solution
in Section III, in which we also include the computer size and time
considerations. Verification of many aspects of the numerical code is
discussed in Section IV. Application of the present model to several

situations related to the underground coal gasification processes is presented
in Section V.
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IT. FORMULATION
In formulating packed-bed flows we make the following assumptions and
conditions. Though seemingly self-explanatory, rationale for these assumptions

will be discussed in the text where necessary.

Assumptions.

1. Temperature: Equal gas and solid temperatures at a given point in
space;

2. Species: Two solid species (carbon and ash) and seven gas species
(nitrogen, oxygen, hydrogen, carbon monoxide, carbon
dioxide, water vapor, and methane);

3. Geometry: One or two-dimensional (including axisymmetric);
4. Gas phase: Ideal gas law;
5. Gas phase: Darcy's law;

6. Solid phase: Three cases are analyzed:

(a) the solids are stationary;

(b) the solid velocity is prescribed at a constant
value in the vertical direction, and zero in the
horizontal direction;

(c) a simple bed-settling model, taking the overall-bed
density to be constant and the solids moving
straight downward.

7. Heterogeneous For the solid-particle-gas reactions, two kinetic models
reactions: are used, based on Yoon, et al (1978). These are AS and
SP models, the term AS denoting "ash segregation” while
SP signifies "shell progressive", respectively. More
on this later.

8. Ash: Fixed ash particle size (at some fraction of the
original particle size).
9. Wall region: In the wall region, a thin region exists through which

thermal energy is exchanged such that a conventional
heat transfer coefficient adequately characterizes
the transport phenomena; (Details will be given in
the section on the boundary conditions.)
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Any additional features will be specified and discussed in the text as they
occur.

The above model is a compromise between completeness and expediency. We
wanted enough complexity to permit evaluation of the usefulness of the current
approach without expending an undue amount of time developing detailed model
physics. For example, although the current model employs only two solid and
seven gas species, the extension to more gas species is conceptually simple,
requiring only a definition of reaction kinetics for the component. In
contrast, extension of the present formulation to more solid species is
somewhat more complicated.

Based on the above set of conditions, the following mass and energy
conservation relationships are derived for the solid and the gas phases.

Gas-phase mass balance.
Overall gas conservation :

390 _ _ g.gC) + 30 + £ (1)
ot ji=1 i=1

where the term C denotes total gas concentration in mo1/m3 of gas-filled
porosity, ¢ the total bed porosity, t the time in seconds, v the

"effective" gas velocity in m/s, 01 the rate of introduction of gas species

i into the bed, S; the source rate of gas species i per unit volume of bed

in mo1/m3-s, subscript i an index for gas species, and n the number of gas
species. A definition of all variables is listed at the end of the report in
the Nomenclature section.

The effective gas velocity (v) is related to the superficial and interstitial
velocities in the following way. The superficial velocity (U) is a convenient
term describing an average velocity with which the gas flows through the total
cross-sectional area of the bed. In the present formulation we consider
porosity both internal and external to the solid particles. The superficial
gas velocity is then the product of the total bed porosity and the effective
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gas velocity (v). On the other hand, the interstitial gas velocity (V1nt)

is physically a more realistic property and signifies the velocity with which
the gas flows through a local void area (Sherwood, Pigford, and Wilke 1975 ).
In mathematical form these relationships are : U = ¢Vint =0V

Conservation of Gas species :

3(ec)
Bt

=— V-(Véc) + Q + 5 + V(CDVy) (2)

where c4 denotes concentrat1on of gas species i 1n mol/m of gas-filled
poros1ty, D effective mass dispersion in bed in m /s Y; mole fraction of

gas species i.

Mass Balances (Solid-phase) .
Overall solid conservation :

6[( 1-9 )Pl]
ot

=~ v{(1-¢)p,v,] + k}'_‘,’" ™ (3)

k=]

where L denotes average dens1ty of solid particle in kq/m s Vg true

solid velocity in m/s sk production rate for solid species k per unit
volume of bed in kg/m -s, subscript k an index for solid species, and m the
number of solid species. Currently we are using two solid species, i.e.,
carbon and ash.

Solid species conservation :

al( l—t:)P-th = — 7 {(1=¢,)p,w;V.] + 55 @

where W signifies mass fraction of solid species.

The overall equation is simply the sum of the individual species-conservation
equations. It is included here, however, because we use these relationships
to calculate the gas- and solid-phase velocjties.



Conservation of Energy .

The energy balance for the entire system, in which we invoke the assumption of
identical gas and solid temperature (Assumption 1), is given by the following
equation

8lo 3 (cibn) + ( 1_¢0)Plz(wkhk)]

i=1 k=1

ot

(5)

- o ™
- V'[i(h.ji)] - Vi1p¥. Y (wih)] + W + ¥-(kVT)
i=1 k=1
where h; denotes entha]py of gas species i in J/mol, ji total flux of gas
species i in mo1/m -s and is given by

J; = vec, -DC vY;

The symbol k in Eq.(5) signifies the effective thermal conductivity in the bed
in W/m-k, T the temperature in K, W the rate of heat introduced into the bed,
and h: the enthalpy of solid species k in J/kg.

Equation of State .
In line with the ideal gas assumption, we have

P = CRT (6)

where the termr signifies the static pressure in Pa, R the gas constant for
the gas mixture in J/mol1-K ( or Pa-m3/m01-K ), and C the total gas
concentration in mo]/m3.

In Egs.(1)-(6), there are 10 + i + k dependent variables, i.e., C, v, Ci»

Yis u, Vs Weo h h:, T, and P. Of these, the static enthalpy term h

1s a function of T and Ci» while the static enthalpy term for solid phase

(h ) is a function of T and W, - Also, the velocity terms U and v are

re]ated by v =Up, ¥; and c; are related by ¥; = ci/C, thus

reducing the number of unknowns to seven. We therefore need an additional
equation to compietely define the flow characteristics. This is accomplished

by relating v and P invoking Darcy's law (Assumption 5) - see Eq. (7).



Once these dependent variables are calculated from solution of the partial
differential equations, other parameter values, such as the porosity, can be
determined from relevant relationships previously derived (Thorsness and Kang
1984). We now give details of these steps.

Gas motions.
In the present formulation we do not explicitly use the overall mass balance

equations for both the gas and solid phases; instead we expand the equations
to derive expressions for gas and solid velocities. Currently only crude
models are employed. In line with the Assumption 5, we invoke Darcy's law in
the gas phase, i.e., ve]ocity and pressure in the bed are related by

'U = - (l‘/u)VP (7)

where the termr signifies pe?ﬁeabi]ity in m2 and y the average gas

viscosity in Pa-sec. When this equation is substituted in Eq. (1), the gas
velocities can be eliminated from the equation. After substitution and by
using the ideal-gas law, the equation can either be viewed as an equation for
pressure, P, or bed-gas distribution, ¢C. In order to maintain a
conservative formulation we choose to view the equation as one for ¢C and
then by use of appropriate back substitution the gas velocity can be obtained.

Solid-phase motions.

Concerning the flow physics of the solid phase, we conceptualize three
situations (Assumption 6). The first situation considered is the absence of
any solid motions, that is, Vg = 0. For this case, Eq.(3) for the overall
solid is not required and therefore it is not used.

In the second situation we envision a uniform flow of the solids in one
direction, and we set the $ol1id velocity at a constant value in the bulk flow
direction and at zero in the horizontal direction, i.e.,

Ve ‘constant (y-direction), and
v. =0 (x-direction).

3
This second case is a rather simple way of simulating the solid-phase motions.



-8-

The third situation represents our first attempt at characterizing the solid-
settling behavior in packed beds in a more general manner. Here we assume
that the overall bed density remains constant and that the solids only move in
a straight downward direction, i.e., (1- ¢e)ps= constant.This removes

the transient term from Eq. (3) and allows the equation to be integrated in
the vertical direction, yielding the solid velocity as a function of position
and time

y
yt) =ve+ Ll [

where the term Vso denotes the solid particle velocity at the bed bottom in
m/s, the subscript ¢ the char, y the coordinate in the bulk-flow or vertical

direction in meters.

Heterogeneous Reactions -- AS and SP Models

In order to solve the system of differential equations (1) -(5), we need to
derive expressions for the production rates S5 and s:, characterizing

solid- gas interactions. For this purpose the kinetic model described in
Assumption 7 has been employed in the present analysis. The model represents
an extension of the models employed by Yoon et al (1978). Two basic kinetic
models have been derived for the heterogeneous reactions encompassing two
extremely opposite behaviors. For both models, a single initial particle size
(monodisperse) is treated; however, extension to a more general case of
various initial-size distributions is possible. The models assume that the
apparent rate of an individual reaction may be controlled by: (i) gas-film
diffusion external to the particle, (ii) diffusion through an ash layer, (iii)
diffusion into the reacting particle, or (iv) intrinsic surface reaction rate.
We now discuss details of these two models.

In the Shell Progressive (SP) model, it is assumed that a core of unreacted
solid is surrounded by a shell of ash. For the gas phase reactants to reach
the unreacted core they must not only diffuse through the external gas film
but also through this ash layer. On the other hand, the Ash Segregation (AS)
model assumes that the ash falls away from the particle leaving unreacted
material exposed to the gas stream.
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Consideration of both AS and SP models for the present problem is useful
because these two models should represent extremes in possible behavior. This
fact then enables us to bracket the magnitudes of the relevant reactions
taking place in the bed.

In both of these models the particle diameter plays a prominent role, and the
particle sizes used in the correlations are assumed to be a function of
position in the bed and amount of reaction which has occurred. Therefore at
any one time there is a distribution of particle sizes in the bed. In the SP
model there is a minimum size the particle can attain during heterogeneous
reactions bacause of the ever-thickening ash layer surrounding the particle as
the fraction of unreacted char goes to zero. This minimum size depends on
initial particle size and ash concentration. By contrast, for the AS model
the diameter for the unreacted solid particle can reach zero (because now
there is no ash layer tending to inhibit reactions at the surface), along with
the ash particles whose size is taken to be a certain fraction of the initial
particle size (25% is used here -- see Assumption 8). Additional discussions
and relations for particle size and other terms derived for these models are

given later in this section as well as in Appendix A.

Reaction rates.
In characterizing the reaction activities taking place between the gas and the

solid in packed-beds, we have used seven chemical reactions in the present
analysis. Four of these are concerned with the heterogeneous reactions, i.e.,
carbon and other species. The fifth reaction, water-gas-shift (WGS), is
quasi-heterogeneous in that the gas-phase species involved in this reaction
are highly catalyzed by the presence of solid surfaces, such as happens in
packed beds. The remaining three reactions considered here describe purely

gas-phase reactions.

Heterogeneous reactions.
There are four heterogeneous reactions for both AS and SP modles. These are:
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Reaction 1: cC+ 1/2 02 + a Cco + (1-a) COZ
Reaction 2: C+ CO2 «~ 2C0

Reaction 3: C + HZO «~ (O + H2

Reaction 4: C+2H, « CHy

For the SP model the reaction rates are given in the form, adapted from Yoon,
et al (1978);

_ 7 N (c—ceq)
TTT _1F .6
kdy 2Dd,  mkpds (9)

where the term r is the reaction rate per volume of bed in mo]/m3-sec, N
number of solid particles per volume of bed in partic]es/m3, c - ceq the
concentration potent1a] for reaction, k the gas-film mass transfer
coefficient in m /s, d particle d1ameter in m, F the fraction of the
particle diameter wh1ch is occup1ed by unreacted core, D effective gas
diffusivity inside a particle in m /s, n reaction effect1veness factor,

kr intrinsic reaction constant in 1/s, Pe carbon density in unreacted
solid in kg/m3, and du the unreacted particle diameter in m. Physically,
the first term in the denominator in Eq. (9) signifies the bulk mass transfer
of reactants to the particle surface, the second term the diffusion through
the ash layer, and the third term the diffusion into and the intrinsic
reactions at the surfaces of the unreacted core. The reactions are thus
Timited by these three mechanisms for a particle in SP reaction model.

With the AS model there is no ash layer and the reaction rate is given by

7 N (c— Co)
Tas = 1 6 (10)

+
1-k 47  MkPdp
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and is dependent on only two coupled mechanisms, bulk mass transfer of
reactants to the particle surface and diffusion and reaction in the unreacted

particle.

Water-gas-shift reaction. In addition to the above heterogeneous reactions we
add the WGS reaction

Reaction 5: co + H20 - C02 + H2

Even though it involves only gas phase species, it is highly catalyzed by
solid surfaces and as a result nearly all the reaction occurs on surfaces in a
packed bed situation. For this reaction the same basic form as those given
above are used, except that in the SP model the particles are taken to be
uniformly active calalysts (i.e., no unreacted core is considered) and the
rate is given by the AS model expression modified with appropriate particle
diameters. On the other hand, the rates for AS model should account for the
presence of both the unreacted particles and the ash particles. Therefore, we
take the overall rate to be the sum of two rates, one using the unreacted
particle parameters in the AS expression and one using the ash particle
parameters.

Intrinsic reactions. In both AS and SP models it has been assumed that the
intrinsic reaction rate of carbon and gas can be adequately represented by the

simple form

r = A (c—cy) exp (—E/RT) (11)
where the primary gas phase reacted is included here in a simple first order
manner, and Ce the equilibrium concentration expressed in terms of other
properties. For example, for the reaction 5 just described, we have :

ceq = (c3c5)/(0.0265c6)exp(-3920/T).

Other reactions possess similar expressions.
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The expression for the intrinsic rate of the water-gas-shift is somewhat more
complicated. It is taken from Govind and Shah (1984)

rs = 568RT (0.5—2 ’2‘15‘;_1 XICOHICOL,) exp (~13971/T) (12)

The kr used for this case in the overall rate expression inciudes
everything except the carbon monoxide concentration.

Purely gas-phase reactions.
We now consider three, strictly gas-phase reactions, which are included to

allow gas-phase combustion. The reactions selected are

Reaction 6: €0 + 172 02 + CO2
Reaction 7: H2 + 1/2 02 + H20
Reaction 8: CH4 + 2 02 »> COZ + 2 H20

The rates for the reactions 6 through 8 can be expressed by the following form:

"% 156 A B R, expl—E/RT) (13)

wherein the term Rs’ representing mass-transfer effects, was added to the
reaction rate not so much for physical reasons but as a simple way of limiting
gas~-phase reaction rates at high temperatures. This aspect will be discussed
further in the section on the method of solution.

For CO combustion (reaction 6), we have, from Field et é].(1967):
Mg = 4.75 (10°); B¢ = 17.5 c0° ¢%%/(cvaa.7c();

6
Z = Cq Rfact(G); E6/R = 8050 K.

6
6

For hydrogen combustion (reaction 7) is given by Peters (1979):
A, =108 (10'0); B, =1

Z7 = Cq Rfact(7); E7/R = 15150 K.
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Finally, for methane combusiion (reaction 8) is, from Sohrab et al. (1984):
Ag = 433 (10%) 5 By =1;
Iy = cy Rfact(a) : E8/R = 23,200 K.

8
8

Transport properties.

In the partial differential equations, Eqs.(1)-(5), many physical and
transport properties are involved in describing packed-bed flows. We now
express them in terms of appropriate thermodynamic and flow paramters, such as

temperature and the flow velocity.

In particular, four physical properties, i.e., the absolute fluid viscosity,
the specific heat of the gas, the heat capacity of the solid, and the thermal
conductivity of the solid, are expressed in the model as a linear function of
temperature. Details are given in Appendix B. In addition, for the
conditions of present interest, we obtain reasonably constant values (0.6) for
the Prandt1 and the Schmidt numbers. Therefore, using known values of the gas
viscosity and specific heat, Prandtl number, and Schmidt number, we can
calculate the magnitudes of the diffusivity and thermal conductivity for the
gas phase. An extension of property dependence on composition is
straightforward but not included in the current model.

In addition, we need expressions for the effective mass and thermal dispersion
coefficients in both the axial and the radial directions because the gas
species have to flow through the void spaces between the solid particles in
packed-bed flows. Much work has been done on determination of these
dispersion characteristics (e.g., Coberly and Marshall 1951, Yagi and Kunii
1957, Bischoff and Levenspiel 1962, Edwards and Richardson 1968, Olbrich and
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Potter 1972, Schlunder 1978, Dixon and Cresswell 1979, and Wakao and Kaguei
1982). For present purposes we choose the following four correlations to

represent these dispersion properties :
Effective Mass Dispersion - Perpendicular (Bischoff 1969);

D%ff/ng = 0.73 4, + 0.1 Re Sc (14)

Effective Mass Dispersion - Flow (Edwards and Richardson 1968);
Diff/D =0.73¢_ + 0.5 (Re Sc)2/(9.7 6. + Re Sc) (15)
g e e
Effective Thermal Transport - Perpendicular (Wakao and Kaguei 1982);
eff 0
k = k + 0.1 16
kp /kg =K '/kg + 0.1 RePr (16)
Effective Thermal Transport - Flow (Wakao and Kaguei 1982).
eff _,0
kg /kg =K /ky + 0.5 Re Pr (17)

where the symbol Pr denotes the Prandtl number, i.e., Pr a;cg/kg, kg

the gas thermal conductivity, Re the Reynolds number based upon the
superficial velocity (U) and the particle diameter (dp), j.e., Re = Udﬂ:hn,
SC the Schmidt number defined to be Sc =u/p Dg, and the subscript f

refers to the local flow direction and p the direction perpendicular to the
flow. In the model we assume that these compenents can be mapped onto the
required x and y directions by constructing an elliptical variation of
magnitudes between f and p components. At high temperatures the effective
thermal conductivity becomes much greater than the physical thermal
conductivity, principally because of the radiative effects becoming dominant
at high temperatures, typically above 1300 K. Details are given in Appendix B.

Boundary conditions .

Since there are many situations which we want to study, we list various
boundary conditions, along with options to apply relevant conditions to each
problem of interest.
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For solids, we consider three situations, consistent with Assumption 6. These
are : stationary solids, constant solid velocity, and the solid velocity
determined from Eq.(8), based on the constant-bed assumption. Thus, all we
need to prescribe for the solid motions is either the flux or the velocity of
the solids being injected at the exit plane counter to the gas flow

direction.

For other dependent variables, such as the species and temperature, the
boundary conditions are more complicated, and we 1ist them at four boundaries
encompassing the packed-bed flow field, i.e., the inlet plane, the exit plane,
the centerline axis, and the wall region (see Figure 1).

(a). Inlet Plane . For species, we prescribe flux values here,
f = J. (]8)

Details are given in Appendix C.
For thermal balances, we impose the condition

n n
(?;-if‘h‘)m— = (i}:‘;j.hi)yﬂ — (k3T/9y) yupe (19)

In this equation, the injection temperature and flow are known (prescribed),
while the temperature at the inlet position and its gradient are to be
obtained as part of the solhtion. For situations where the temperature
gradient is zero at the inlet plane, the equation degenerates to specifying
the inlet temperature equal to the temperature at the bed bottom. If solids
leave the bottom, we assume that they leave at temperature T(x,0).

a?

(b). Exit Plane. For species at the outflow plane, we impose the zero-gradient

condition
dc,/dy = 0 (20)

For the energy-balance, we have a radiant heat-exchange capability with the
surroundings. Thus we have :

(21)

—k 9T/ =S (T*~T2)
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where the term S signifies the product of the emissivity, the Stefan-Boltzmann
coefficient, and the "shape factor” ( or "viewing factor"). For cases where
radiation is assumed zero, this degenerates into a zero-gradient condition.

(c). Centerline. For all dependent variables, that is, both the species and
the temperature, we impose axisymmetric condition, i.e., zero gradient:

dF/dx = 0 (22)
where F is any dependent variable.

(d). Wall Region. The wall region is defined to be both the vertical wall and
the portion of the bottom plane which has no inlet flow. To accommodate
various thermal and chemical interactions at the wall boundary, we introduce
many optional boundary conditions, including wall-regression due to char
formation.

For species, we introduce two possible situations:

(i). No flux at the wall.
dy,/dz = 0 (23)

Here z is the appropriate dimension perpendicular to the wall.

(i1). Finite species flux related to the heat-transfer characterisitcs and
the wall drying/pyrolysis model. (This submodel is described in Appendix C.)
For thermal energy balances in the wall region, we have :
(i). Adiabatic wall.

dT/dz = 0 (24)

(ii). Heat exhange with the flow through heat-transfer coefficient
a. Isothermal wall temperature, i.e., infinitely large
heat-transfer coefficient based on the Nusselt correlation.
b. Variable wall temperature, with either prescribed magnitude
for the heat-transfer coefficient, or a built-in correlation for
heat transfer between the flowing medium and the wall
region.(See Appendix D.)
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We note that the last boundary condition can also accommodate the case of
wall-regression, for which the grid-dimension rezoning will be made as needed
in performing numerical computations. These conditions can be specified
independently for the side and the bottom walls with some restrictions.

Effects of AS and SP models.

Before proceeding to discuss the method of solution, it is instructive to
compare the relative magnitudes of the various factors that constitute the
packed-bed flow phenomena, particularly the particle sizes and the reaction
rates. Here we present some typical behavior related to the rate expressions
described above. These sample cases are for the conditions of Ps™ 1000

ka/m®, y = 0.5, f = 0.25, dy = 0,025 m, G = 1.0 mol/n’-s, a= 1.0,

and constant bed density. Figure 2 shows the effect of temperature on various
reaction rates used for F=1_(fu11 char, no ash) for which case the rates are
the same for both SP and AS models, from Eqs.(9) and (10). At low
temperatures the rates are dominated almost entirely by intrinsic kinetics
(reaction 1imited) and display sharp decrease with decreasing temperature. At
high temperatures, on the other hand, the rates become dominated by internal
particle diffusion and finally by external mass flux transported to the
particle surface. This general behavior applies to all reactions shown in
Figure 2, except for the C0.+ 02 reaction. This particular reaction takes
place only in the gas phase under the given conditions and consequently is not
affected by mass transfer considerations.

As the packed-bed reactions proceed, the fraction of carbon decreases, causing
the particle sizes to become smaller and the particle number densities (number
of particles per cubic meters) to become large. Here we are making the
constant bed density assumption. The quantitative variations of these
properties are also given in mathematical form in Eqs.(A.1) through (A.14) in
Appendix A. Here we show these in graphic form (Figures 3 and 4) for both SP
and AS models. It can be seen from the figures that the particle diameter
decreases only slightly and reaches a finite value as the fraction of carbon
reaches zero for the SP model, whereas for the AS model the particle size
steadily decreases and ultimately goes to zero, consistent with the model
assumed. For the AS model, ash particles are generated as the carbon
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particles undergo various reactions in the bed. The size of the ash particles
is assumed fixed at 25 % of the initial size, i.e., f = 0.25, and thus is
0.00625 m (see Figure 3). As particle sizes diminish with decrease in the
carbon fraction in the bed, the number of these carbon particles per unit
volume (number density) increases, to satisfy the mass-conservation
condition. This is shown in Figure 4, where the number density for unreacted
carbon particle (N) is the same for both models and the ash particle number
density increases dramatically as its size approaches zero. The mathematical
description of this behavior is given in Eqs.(A.13) and (A.14).

The choice of either SP or AS model determines the reaction patterns taking
place inside a packed bed as the fraction of carbon diminishes. Figure 5
shows that the carbon oxidation rates decreases sharply with decreasing carbon
fraction for SP model, while those for AS model change only slightly for a
sizable range of carbon fraction and even display a moderate increase before
finally going to zero. This difference in rates is a result of the difference
in disposition of the ash in the two models. In the AS model the ash falls
away leaving the surface directly accessible to the gas phase, whereas in the
SP model an ash layer surrounds the carbon surface, inhibiting reaction with

the oxygen there.

The effects of SP and AS models on the water-gas-shift reaction rates are
shown in Figure 6 as a function of carbon fraction. Only moderate change is
seen for the SP model, in contrast to that for the AS model. Physically, the
reason for such a variance between the two models is due to the difference in
available surface areas acting as catalyst for the WGS reaction. In the
present work, the WGS reaction is the only one affected by the presence of
surface areas. For other reactions, only pure (intrinsic) kinetic reactions
prevail, such as those involving carbon with coé and HZO (Reactions 2 and

3 in Figure 2); the surface areas do not act as catalyst for these reactions.

Therefore, these reactions produce the same rates for both models.
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ITI. METHOD OF SOLUTION

The pértial differential equations (pde's) described above are solved using a
Method of Lines (MOL) approach. This solution scheme was chosen for several
reasons. The method allows a great deal of flexibility in formulating the
physics of a given problem. Many changes in physics are easily implemented.
The method can naturally handle 1, 2 or even 3 space space dimensions as well
as the various time scales present in the problems of interest. Finally, the
method has been successfully applied to the related problem of oil shale
retorting by Johnson and Hindmarsh (1983).

The Method of Lines solution scheme is based on the solution of a set of
initial value ordinary differential equations (ode's). These ode's are
obtained from the pde boundary value problem of interest by discretizing the
pde's in the spatiél dimensions. This yields a set of ode's with time as the
independent variable. A suitable ode solver is then used to integrate the
system of equations in time to yield the required results. The power of the
method stems primarily from choosing one of the very powerful ode solvers
currently available. The ode solver must be able to handle the stiff system
which results from the discretization of the spatial dimensions and physics of
the problem. It should also provide a straight forward method of time step
and error control. The ode solver we have chosen, which meets these
specificafions, is LSODE a widely available software package developed at LLNL
by Hindmarsh (1980). LSODE provides the user with a number of optional
methods to be used in solving a system of ode's. We select option mf=25,
which uses an internally generated banded Jacobian to solve a stiff equation
set. The band width of our problem is related to the number of dependent
variables selected as well as the number of cells in the x or radial direction.

The use of the Jacobian represents both the power and the limitation of the
solution scheme. The Jacobian is a matrix defining the partial derivative of
dependent variables with respect to other dependent variables and represents a
method by which the equations to be solved are linearized, a key step in the
solution of the ode's.. However the size of the Jacobian can get quite large.
For our problem the major computer storage limitation comes in dealing with



-20-

the storage of this Jacobian. The number of floating point values (fp's)
required by LSODE for this and other purposes is given approximately for our
problem by the formula

fp's = 10 Nag * 3 (nx+2) (nv-l) neq

q

where neq is the number of equations, n, is the number of dependent
variables in the problem, and Ny is the number of cells in the x-direction.

The number of equations, neq to be solved by LSODE is given by

where n_ is the number of cells in the y-direction. For a one dimensional
problem this size constraint is not serious. For a problem in which seven gas
species are used a 360 cell problem can be contained entirely in the memory of
a 400k word CDC 7600 and a 1800 cell problem in a 2 million word CRAY. Size
constraints however are much more limiting for a two dimensional problems.

For a 7 gas species problem only a 11x8 ("x"y) problem can fit on the CDC

7600 and a 41x11 problem on a CRAY. If, however, only three gas species are
required in a two dimensional problem then a 11x21 problem will fit of the CDC
7600 and a 11x101 problem on the CRAY.

Unlike the computer memory requirements, general statements cannot be made on
computation time requirements, because the computation time depends not only
on the problem size but the problem physics. As an example, a 1 mo1/s-m
flow of 2:1 steam:oxygen mixture would gasify 1/3 of a one-dimensional char
bed 1 meter Tong in 8 hours. The computation times on CDC 7600 time for this
gasification process using seven species were 363 s for 11 nodes, 1105 s for
21 nodes, and 2845 s for 41 nodes. These times are larger than previously
reported in Thorsness and Kang (1984). Analysis reveals that only a small
increase in computation time was due to variable properties; rather, the more
stringent error control currently being applied in LSODE seems to be causing
increased computation times. A further feel for computation time is provided
in the following discussion of the validation and example runs.
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In developing the discretized equations fairly standard finite difference
methods were used. Wherever possible the conservative nature of the equations
was preserved. Also upwind or donor cell differencing of the convective terms
was used to protect against the formation of spatial wiggles in convected
quantities. Spatial wiggles cannot be tolerated since they can lead to
nontrivial negative concentrations which are difficult to handle. The price
paid for removing the wiggles in this fashion is an increase in numerical
dispersion, which can only be reduced by using finer cells. The details of
the differencing used as well as boundary value treatment are given in
Appendix C.

The computer code which was generated to perform the required calculations is
quite flexible. A large variety of boundary conditions, initial conditions,
geometry and problem physics can be specified through the input data. This
includes the ability to select from a 1ist of seven gas species built into the
code. For problems requiring only a few gas species the ability to solve the
equations for only a selected set of gases can lead to a large savings in
computer resources. The code is modular enough that additional gas species
and new kinetic or transport correlations can easily be added. This however
does require a recompilation. The code is designed so that a given problem
can be repeatedly restarted from any desired point in its evolution and new
problem parametrs can be specified. This can greatly reduce the computational
effort in doing parameter studies as well as provide a means to recover from
minor computing problems that may arize. Finally, to maximize flexibility of
output, two post-processor codes are used to tabulate or plot selected data
from computed results. These codes can be run repeatedly to display different

aspects of a single computational run.

As a result of the robust nature of the solution scheme, few compromises had
to be made in the physical description of the problem to fascilitate the
numerical solution. Two such features, however, have been added: (1) In the
reaction rate routine special coding is present so that two small negative
reactant concentrations do not result in a positive rate; (2) An artificial
mass transfer resistance has been added to the gas phase oxidation rate
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expressions. This is modeled after the gas-film resistance of the
heterogeneous reactions and is a simple way of 1imiting the oxidation reaction
rate at high temperatures. This resistance is controlled through an input
parameter so that it offers no resistance, is equal to that for the
heterogeneous reactions, or any fraction of the gas-film resistance of the
heterogeneous reactions. This allows the gas-phase oxidation to be finite yet
prescribed so that it is everwhere some multiple times larger than any of the
heterogeneous rates. We usualy set the parameter to 0.2, 1imiting the
gas-phase oxidation rates at least five times larger than any of the
heterogeneous reactions. As a final practical matter we have found that on
occasion the calculation will sometimes yield a branch solution with negative
concentrations. Our code can detect this, and restarting the problem at a
point just prior to the problem area provides a successful solution.

IvV. VERIFICATION RUNS

In this section we present results of various runs made to ascertain the
generality of the present formulation for many physical situations taking
place in packed beds. These aspects involve not only steady and transient gas
flows, but also reactions, moving waves (with widely diverse time constants),
one and two (including axisymmetric) dimensions, and wall interactions. We
also determine the effects of mesh sizes on the accuracy and CPU for the
diverse physical situations. Applications of the present method to problems
related to UCG are discussed in the following section.

Before giving specific details, we 1ist cases analyzed to validate the models
and numerical methods embodied in the GSF code. These are:

1. One-dimensional, Steady Flow;

2. One-dimensional, Transient Concentration Wave Motion;
3. One-dimensional, Transient Thermal Wave Motion;

4. One-dimensional, Steady Flow with Wall Heat Transfer;
5. One-dimensional, Catalyst Regeneration Problem;

6. Two-dimensional, Steady Heat Transfer Phenomena;

7. One-dimensional, Gasification Problem.
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The basis for choosing these cases is to investigate Eqs.(1)- (6), separately
and together, to ascertain the versatility of the present approach to
accommodate widely varying flow and reacting conditions.

The reference physical conditions used for these validation runs are :

5.4 (10°°) kg/m-s;

Viscosity u o=
Permeability r = 1.0 (10'1]) mz;
Exit pressure Po = 1.0 (105) Pa;
Temperature (initial) T = 300 K;

Flow rate G = 1 mo1/m2-s;
Tube length L= 1 m

Tube width ( or radius ) 1 m;

Original gas in tube Nitrogen (inert);
Effective mass dispersion D = 5.0(10'4) mz/s;

Effective thermal conductivity k = 5 Wm-s;

Unless otherwise noted, these values were used for all cases.

(1). One-dimensional Steady Flow.
This simple case is considered here to verify the overall gas flow Eq.(1). The
physical situation studied is ; '

One-dimensional;

Steady state;

No reactions;

No solid motion;

Isothermal;

No new gas introduction into the flow from the wall boundary.

Under these conditions all equations but one become superfluous. Only Eq.(1)
remains nontrivial. Thus, Eq.(1) reduces to :

0 = - d(CU)/dy (25)
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Integrating once, we get
CU-=const =6 26)

where both C and U are a function of distance y. In order to obtain the flow
field description, we choose the pressure P as the depenedent variable. The
pressure is related to the velocity U from Darcy's law, Eq.(7) :

r dp
TE (27)
Combining the Eqs.(6),(26) and (27), we get
;%%2=—3%T—G-=constam=1\ (28)
with the boundary condition P=Pe=constant at y=L.
The solution to the differential equation is
Py) =/ P2+ AL -Y) (29)

We now compare this analytic solution with the GSF code calculation results,
as shown in Figure 7, in which the GSF code also calculates the transient
behavior of the pressure buildup inside the bed before reaching the steady
state. Although 51 nodes are used, only the results at certain selected points
are shown in the figure for clarity. Very good agreement is noted between the
calculated results and the analytical solution at steady flow.

(2). Motion of a Transient, One-dimensional Concentration Wave.

When a gas is injected into a packed bed filled with an inert gas different
from the injected gas, diffusion as well as convection of the injected gas
takes place as it flows through the packed bed. Such a situation is considered
here, i.e.,
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One dimensional;

No reactions;

No solid motion;

Isothermal;

Injected gas = oxygen;

Original gas in bed = nitrogen;
Axial dispersion;

Constant porosity.

Under these conditions the only nontrivial equation is the species equation
(2), which reduces to :

L N
[ T (30)
with the boundary conditions
t =0; ¢ = 6
y =0; ve, — D§c/@y = Vo
y=»L; /gy =0

Equation(30) has been solved analytically by Brenner (1962) for these boundary
conditions, i.e.,

ci(y.t) = cmj _ 2827-8) §° Bay[aycos(2a,Y) + Bsin(2a,Y)e "]

X

Co = Cinj k=1 (a + B)aZ + B+ B) (31)

where Y=y/L, e=tv/L, B=vL/(4D), and the eigenvalue a, can be determined
from the transcendental relation

2IkB
tan(2a,) = W (32)
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The solution given in Eq.(32) converges slowly. For large B and/or small o,
it can be approximated by

C_&M =1 —_;_erfc[(Y—e) 'J_eB_]

Co = €Ciny
—'J 429 expl—(Y—8)? g]

+ _;_[1 + 4B(Y + 0)] e*®erfc[(Y+6) '\/ g—]

-2 gll + B(2—Y+©))exp[4B — .eB_(z—Y+9)2]

+ 2B[2(2-Y+8) + 8 + 2B(2—Y+e)2]e"erfc[(2—Y+e)-\/ %] (33)

We shall use the latter asymptotic solution for comparison with the GSF code
calculation results. The specific conditions used are: C = 12 mo]/m3,

D = 5.0(10'4) m2/s, v = 0.8 m/s. Fiqure 8 shows the analytic solution as
well as the GSF results with 26 and 201 nodes at t = 15 seconds. For the
lTatter case only selected points are plotted in the figure for clearer
comparison. The case of 25 nodes is reasonably close to the analytical
solution, but much better agreement is noted between the analytical solution
and the 201-node case. The CPU times on a CDC-7600 for these waves to
encompass the entire bed ( L=1 m ) were 14 s for 26 nodes, 28 s for 51 nodes,
63 s for 101 nodes, and 176 s for 201 nodes. This indicates that increasing
the number of nodes increases the CPU by a factor slightly greater than the
node multiplication factor.

(3). Transient, One-dimensional Heat Wave .

This case considers a timewise motion of a heat wave travelling down a packed
bed when a "heat load" (i.e., increased temperature) is imposed at the inlet
location. We expect a wave motion similar to the above-analyzed motion of a
concentration wave, but with a different wave velocity due to different
physical factors affecting the heat transport processes. Again the heat wave
is allowed to "disperse" in the axial direction (effective thermal conduction)
as it flows downstream with a given gas flux value. In particular, we analyze
the case of:
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One dimensional;

No reactions;

No solid motion;

No new gas introduction;

No gas diffusion;

Gas in bed = nitrogen;

Constant axial thermal dispersion;
Constant physical properties.

Under these conditions the only nontrivial equation, Eq.(5), reduces to :

oy + G-9pcd + 0508 =187

(34)

with the boundary conditions

T
y=L: a__= 3
oy

Equation (34) can be recast into a form amenable to solution, i.e.,

T , 3T ., 8T
WHJW kW (35)

where the terme is defined to be
plcl ]
e + (1-9)pc,

The analytic solution to Eq.(35) is, again from Brenner (1962):

=t[

T(y.t) —Tinj -1 _ 1 -B-
T =T, - 1 ferfc[(Y—G) '\/ 3]

480 B |
~ B0 rgiv-022E) ~ o6
+ _12.[1 + 4B(Y + 0)] e*PPerfc(Y+0) '\/ g-]

—2 4_';2[1 + B2~Y+8)expldB — 2(2-Y+8)?

+ 2B[2(2-Y+60) + 6 + 2B(2—Y+o)’le"erfc[(2—v+e)\/ -g-]
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where Y=y/L and B=UL/(4D), as previously defined before. Figure 9 shows the
analytical solution and the GSF results at t = 4500 s, for 26 nodes and 201
nodes in a packed bed. The original bed and gas temperature is at 300 K, and
the injected temperature at the inlet is 600 K. Very good agreement is seen
between the analytical results and the code calculations, especially the

201-node case,

Note the similarity of the shapes between the thermal waves and the
concentration waves. Physically, however, there is a great difference between
these two wave motions, i.e., the time scale of motion. Whereas the oxygen
wave moves through the bed in less than a minute, the thermal wave moves much
more slowly, consuming more than two hours to encompass the length of the bed
(L=1 m). This is due to the large heat capacity of the solid particles
consituting the packed bed. The CPU times for the GSF runs on 7600 computer
were 19 s for 26 nodes, 42 s for 51 nodes, 107 s for 101 nodes, and 202 s for

201 nodes.

We thus conclude that the GSF code can calculate and produce similar solutions
(e.g., the thermal and concentration waves), by integrating different PDE's
with widely variant propagation velocities.

(4). One-dimensional Flow with Wall Heat Transfer.
This is a quasi-two dimensional situation in that although the flow is one
dimensional, the thermal-energy exchange with the wall is accounted for by use
of a heat-transfer coefficient and the local temperature difference between
the flow and the wall temperatures. The specific conditions studied are :

Steady state;

Constant wall temperature;

One-dimensional;

No reactions;

No solid motion;

No new gas introduction;

One gas species (nitrogen);

No species diffusion;

Constant physical properties.
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Under these conditions only Eq.{5) is non-trivial, and we have:
2 yz _

k d°T/d -(Cch)dT/dy - (hAs/At)(T - Tw) =0 (37)
where the term h denotes the heat-transfer coefficient (taken to be a constant
here), As/Ac the ratio of the bed surface area to the cross-sectional area
of the bed, and the other terms have their usual meanings.
Two different boundary conditions are treated at the exit plane: (1) zero
temperature gradient ; and (2) radiative heat exchange with the surroundings.
We will see that not only different solutions are obtained, but also quite
different temperature distributions prevail inside the bed, depending on the
boundary conditions.
(Case 1). Zero temperature gradient at exit.

i = : . . = -k d

inlet (y=0) ; C cg ] T1nj C cg urT dT/dy

exit (y=L); di/dy =0

The analytic solution to Eq.(37) -with the above boundary conditions is :

T(y) - T, = (T405°Ty) 1A exp(-E3y/2) - B exp(E,y/2)}

(38)
where p=2C cg U/k; q = (h Ap/k Ac);
£y = (0F +0)7% B, = E 4 By Ep - s
E, =1+ Ey/(2p) - (1-E,/(2p))(E4/E,) exp(-EqL);

A=1/E,; and B = E3 exp(-E] L) / (E2 E4).



~30-

Figure 10 shows the GSF results and the analytical solution for the case of
the inlet temperature at 1000 K and the wall temperature at 900 K. Good

agreement is seen from the figure.

(Case 2). Radiative Loss at Exit.

inl ; o ® ) T - k dT/dy;
inlet (y=0) ; C Cq u T1nJ c €q urT /dy;

_ . 4 .4
L) 5 -k di/dy = S(T" - Torrions)-

exit (y

where the term S is a function denoting combination of the radiation shape
factor, the emissivity of the flowing gas, and the Stefan-Boltzmann constant,

see Eq.(21).

The analytic solution to Eq.(37) with this radiative boundary condition can be
obtained from solution of quartic expressions for the temperature term, and is

given in Appendix E.

Figure 10 also shows the analytic solution for exit conditions of 0.7
emissivity and unity view factor. In contrast to the previous case of no
radiation loss at the exit plane, in which the temperature distribution inside
the bed was always above the wall temperature, the radiative case shows that
the bed temperature can become lower than the wall temperature due to large
radiative heat loss at the exit plane to the ambiemnt surroundings. In fact
the present particular example shows that the exit temperature goes down to
738 K, much Tower than the 900 K wall temperature. Figure 10 also shows the
GSF code results for 51 nodes in the bed. Good agreement is again noted.

(5). Catalyst Regeneration Problem .

This problem is often encountered in designing reactors for cracking or
dehydrogenating hydrocarbons, where regeneration is employed to remove coke
deposits form the catalyst bed. Removal is effected by oxidation, which
generates a high temperature peak in the reaction zone where burning of the
coke is taking place. This reaction zone then travels down the bed, purging
coke in its path. Such a case is studied here, i.e., the regeneration of a
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catalyst bed by oxidation of contaminants. The problem is idealized to the
case of introducing oxygen and nitrogen at the inlet of a packed bed
containing inert particles with a small fraction of carbon. The bed is
initially at temperature TO. Only carbon combustion is allowed, i.e.,

c+02 *> co2 reaction.

For analytic case the specific conditions used are:

One dimensional;

Constant flow rate;

Constant properties;

No solid motion;

No mass dispersion;

No thermal dispersion;

Two gas species. (oxygen and nitrogen);

Carbon combustion only;

Zero-order reaction (independent of temperature).

Under these conditions Egq.(2) becomes :

G Y] _ 8( Uc,2)

3t W (39)
Eq.(4) becomes:
dl—tct)plw] = s‘ ) (40)
Eq.(5) becomes:
U
[$pecs + (1—¢.)p.c.lg'f =X ;;,“'T) +pL'B

(41)
where L* denotes the heat of reaction and B the production (or loss) rate of
carbon. The term B will be defined subsequently. Since oxygen and solid
carbon react with each other in combustion, So? and s* are related to each
other and to B.
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Rearranging and introducing new symbols (for this problem only), we obtain:

oz 9z =—BM‘ \ - (42)
g " Cay T TOME
H __p (43)
I
T T _,q°
chs—aat telay =pLB (44)

where Z is the mole fraction of oxygen, H the carbon content (kg/kg-catalyst),

and B=kPZH/H,, Ho being the initial carbon content in the bed.

The boundary conditions for this traveling reaction wave are:
t =0: Z=0and T = TO;

t-Zlvso: H=H0;

<
n

o

~
(]

z0 (. Oxygen injection at inlet).
The term v denotes the gas velocity in bed, i.e., v = G/(pgp).

Introducing new variables, the differential equations (42)-(44) become:

GZ/6£=—AZ (45)
Ner=—\NZ/Z (46)

MYQ/gr +SJN/BE=AZ/Z, (47)
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where

A = H/H,,

a = (T-Tp) c/(L” Hy),

£=y b M kP/GM)

T = (ZOIHO) kP (t- .Yng/G)
M=

1- (cgopg/csps)
S = (Mg cg HoM,. g Zp)

The solutions to these equations are, from Johnson et al (1961):

Zo/Z = 1 + e~"(ef~1) (48)

Ho/H = 1 4 ¢~ (e™1) (49)

The temperature solution is generally more complicated; however, for the
special case of M=1, S=1, and all combustion proceeding to 002, a closed-
form solution to Eq.(47) can be obtained from Thorsness, et al (1978);

For 7€§: .
wWee+ef—1 (50)

VAT

T, = e‘—' InW — L
L'Hye, (147 w
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and for 7>§:
T-TO - e"-‘ n W 1 w=0'+‘—l
TH/e, +et [0~ Wloo ot (51)

Using the GSF code, sample calculations were performed for initial bed
temperature of 600 K, givin§ a reaction wave which proceeds downstream as a
function of time. Results are given in Figures 11 and 12 at t = 427 sec with
101 nodes for the GSF code calculations. Figure 11 shows the carbon and the
oxygen distributions along the bed. Also shown is the analytic solution,
which compare favorably with the GSF results. The temperature distribution is
given in Figure 12. The profiles agree well with each other except in the
reaction region, where the analytic result is more peaked than the GSF result.
This discrepancy can be attributed mainly to the fact that the upwind
difference used for stability in GSF code unavoidably introdyces some
dispersion into the problem. This dispersion can only be made identically
zero by using an infinite number of nodes. In real systems some dispersion is
always present; however, the analytic solution is only exact for zero
dispersion. Therefore, the agreement is deemed acceptable.

(6). Steady, Two-dimensional Flow with Wall Heat Transfer.

This type of flow is often employed to measure the effective thermal
conductivities in packed-bed flow situations (e.g., Wakao and Kaguei 1982).
Consider a cylindrical packed bed operated as a steady-state heat exchanger,

that is,

Steady state;

Uniform flow;

No reactions;

No new gas introduced;

No solid motion;

Constant wall temperature;
One gas species (nitrogen);
Constant physical properties.
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Under these conditions only Eq.(5) is nontrivial, it reduces to:

8T _ 1 &(xk: §T/3x) 3T
Caw i ® e (52)

with the boundary conditions

x = 0 (centerline): 3T/ax =0 (symmetry condition);
x = R (wall): - kxaT/ax =h (T - Tw);
y =0 (inlet): T= T0 .

The last condition states that the inlet temperature is maintained at a
prescribed value T,. (Usually the inlet temperature is different from the

0
injected temperature by the thermal gradient exisitng at the inlet.)

Analytic solution to Eq.(52) with these boundary conditions is given in Wakao
and Kaguei (1982):

T-Ty _. & JaxR) exp(—222)
e o =2 .Y (53)
0" lw am) 8501(a,) [1 + (a./BY]

where B = h R kx; and '
Z= 2y k; / (Ge,R?)

141 +4'(t:_"k_)zkxk,]u

and the roots of the coefficients in the Bessel solution can be obtained from
the transcendental relation

B Jo(an) =a J1(an).

For large y, i.e., some distance from inlet, the analytic solution can be
simplified to:

T-T, = 2 Jo(a;x/R) exp(~a2y)

To=T, B Jo(ay) [1 + (a;/B (54)
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It will be seen that this simpler solution is adequate for most of the length
of the packed bed.

Sample calculations were made on GSF code for a bed (0.5 m long) initially at
900 K. At time t = 0, the inlet temperature is raised to, and maintained at,
1000 K. The results are shown in Figure 13, which shows a slow decrease in
the centerline temperature along the bed, while the near-wall temperature
shows a steep decrease immediately after the inlet region, reflecting strong
heat-transfer activity there. When we compare the results from the GSF code
(with 6 x 21 nodes) with the analytic solutions, we obtain good agreement
everywhere except near the inlet region. This discrepancy is due to the use
of a simpler analytic solution, which assumes identical injected gas and
bed-bottom temperatures. Despite this, the two results are close enough to
confirm that the present GSF code can calculate accurately the two-dimensional
heat transfer situations in a packed bed.

(7). Steady, One-dimensional Gasification Problem.

A number of quasi-steady one dimensional gasification models have been
developed over the past few years. The models are quasi-steady in that they
assume that in a coordinate system translating at the proper velocity the
gasification waves will appear to be unchanged with time. Recently Britten
(1985) has developed such a model based on physical submodels essentially the
same as those used in GSF. Although the physics is basically the same the
method of solution is entirely different, in that the equations reduce to
ode's and a shooting method relying on repeated integration of the equations
in the space dimension is used. Comparison of the GSF results with results of
this alternate solution should prove useful in validating both solution

schemes.
The basic assumptions made for this case are:

One dimensional;

Constant injection rate;

No mass dispersion;

Three gas species (0,, CO and COZ);
Constant properties;
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In the simplified model of Britten, CO plays the role of both (CO and HZ’
while CO2 plays the role of C02 and HZO’ the intent being to compute the
total conversion to CO and H2 not their specific ratios. Britten also uses
a composite gasification rate for char gasification given by the steam
gasification kinetics. Input values for this run were 25% oxygen and 75%
steam at 1 mo1/m2-sec.

The GSF results were computed using five gas species NZ’ 02, co, Hz, and
COZThe NZ and H2 were everywhere zero. The GSF results reach an
essentially quasi-steady nature after approximately 2.5 hours of gasification
starting from a bed initially at 1000 K. In Figure 14 the results of the two
models are compared in terms of dimensionless values for temperature, gas
composition, and carbonfraction. The results of the Britten model have been
shifted arbitrarily on the position axis since they are taken as completely
quasi-steady. The agreement, especially near the gasification front, is
excellent. There is some discrepancy on the downstream end. This is
attributed to a slightly different treatment of the details of the
gasification kine;ics and the unavoidable difference in treatment of the

downstream boundary conditions.

For the GSF results 39 cells were used and because of the high degree of
accuracy desired at peak 20 minutes of CDC 7600 time were required.

V. SAMPLE PROBLEMS RELATED TO UCG

Now that we have made some attempts to validate parts of the GSF model and
numerical approach, we apply the code to several disparate situations which
have bearing on the underground coal gasification processes. These cases are:
wall drying, wall regression during gasification, and water injection into a
gasifying bed. 1In what follows, we treat these cases in detail.

(A). Transient Water Injection during Gasification.

One of the factors affecting the underground coal gasification processes is
the water influx into the active gasification zone. The transient response of
the reacting flow inside a packed bed is calculated here as an application of
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the present approach to the water injection problem. Some experiments and
theoretical calculations have been made by Edgar, et al.(1985). We consider
the following situation:

One dimensional;
No pyrolysis.

The gases are composed of 7 species, undergoing 8 reactions, in a packed bed
of 0.15 m long with 0.05 m diameter. The initial temperature is 900 K.The
flow begins at t = 0 with the inlet gas (26 % oxygen, 74 % water vapor) being
injected at a steady rate of 1.5 (10'3) mol/s. The char then reacts with

the incoming gases to produce CO, 002, HZ’ and CH4 in the bed. The
gasification front moves down the bed, consuming carbon in the process. At

t = 3500 sec, when the product gases (at the exit) have reached a reasonably
steady state, we inject water at the midpoint of the bed, slightly downstream
of the reaction front. We assume that the liquid water influx is instantly
turned into water vapor, and it is this injected steam (taken to be 8(10'4)
mol/s in this example) that reacts with the char and the gases flowing from

upstream.

Calculations were performed on the GSF code with 11 nodes. Results are shown
in Figure 15, where the various gas species are plotted as a function of time.
The sudden changes in CO and the more gradual change in the HZ gases are
noted. While the water vapor injection (at the midpoint of the bed) is
continuing, the CO and CO2 mole fractions are seen to approach steady

values, whereas that for the H2 gas is still decreasing. When the midpoint
injection is turned off at t = 5500 sec, the gases undergo changes which
eventually return them to pre-injection conditions. However, in this
particular example, the reaction front has reached the exit region at about

t = 7200 sec, so that the gas flowing out of the exit is composed of 26 %
oxygen and 74 % water vapor,i.e., the inlet gases. The carbon consumption
history is plotted in Figure 16, and shows a steady decline in the amount of
char available for gasification. These results, while appearing to be
physically reasonable, are not intended as the definitive description of what
takes place in the bed when water is injected. We defer extensive physical
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interpretation to a Tater date. Rather, they are presented here to
demonstrate the calculational capabilities of the GSF code, for the case of
water injection into the bed during active gasification.

(B). Wall Drying.

Understanding the physics of cavity growth at the wall of a rubble filled
gasification cavity is of importance in determining ultimate cavity width and
thus resource recovery in in-situ coal gasification. Grens and Thorsness
(1984) have suggested that the growth is directly linked to the rate of heat
transfer from a hot rubble bed to a drying/pyrolyzing coal wall. To explore
the fundamentals of this mechanism a series of experiments is being undertaken
at the University of California, Berkeley under Prof. Grens. The first in
this series of experiments will look at the simple model system of a uniform
non-reacting bed with hot gas folowing through it and a water saturated wall.
The rate of drying of the wall and thus the rate of heat transfer to the wall
will be examined in a cylindrical vessel with the hot gas flow entering at the
bottom center.

GSF has been used to do some preliminary modeling of a related system. We
assumed a cylindrical reactor of radius 5 cm and height 25 cm filled with a
lTow density spherical packing 1.25 cm in diameter creating a uniformly
permeable bed. The walls are assumed to be kept saturated with water and are
evaporating into the hot gas flow. 8 mmol/s (1 mo]/s-m2 of bed) of gas are
assumed injected at 900 K while the initial bed temperature is 300 K. The
wall model described in Appendix D is used to apply boundary conditions at the
evaporating walls. The bottom of the bed is assumed to operate

adiabatically. The injected gas is assumed to be nitrogen. Preliminary runs
indicated that results obtained assuming only one gas species gave essentially
the same results as that for the two gases, N2 and Hzo, system so, to save
computer resources runs were made using a one gas system.

Many runs were made using a variety of cell numbers. Al11 of these runs
eventually reached a steady-state solution. The results show that the average
drying rate can be fairly well estimated even with a very coarse 3x3 system.
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In Figures 17-20, selected results computed using a 6x11 system are
presented. In Figure 17 the time to reach steady-state is compared for a
range of injected gas flow rates. As one would expect the time to reach
steady-state increased rapidly with decreasing flow rate, ranging from about
100 seconds for the 10 mo1/s-m2 case to 5,000 seconds (2.8 hrs) for the

0.1 mo1/s-m2 case.

Figure 18 shows the average wall drying rate as a function of injected gas
flow. The slope of the flow rate versus drying rate on the 1og/log plot
ranges from about 1 at the low flow to about 0.8 at the high flow. The 0.8
power dependence at the high end is clearly consistent with the heat transfer
correlation 0.8 dependence described in Appendix D. On the low flow end the
unity power dependence is not a result of the heat transfer flow dependence
which is 0.5, but rather reflects the fact that the 1imiting factor is total
heat injected. That is, at the very low flows the exit gas leaves the bed at
the steam temperature and thus the drying rate is limited by the available
energy in the injected hot gas.

In Figure 19 the Tocal evaporation rate versus vertical position in the bed is
shown at steady state for three flow rates. As would be expected the rate is
more uniform at the high flow where the energy input is not Timiting. In
Figure 20 the calculated wall and center-line temperatures are plotted for the
three flow rates. The heat limitation is clearly shown here by the
coincidence of the wall and center line temperatures near the top of the bed
for the low flow case.

(C). Wall Regression during Gasification.

The final example demonstrates GSF's ability to perform calculations for an
axi-symmetric gasifying bed. The problem of interest here is related to small
cavities and to our proposed simulated coal seam experiments. These
experiments would utilized a synthetic coal seam approximately 5 ft (1.5 m)
thick. The model system on which calculations were performed is 1 meter in
radius and 1 m high. It is filled with rubble material consisting of ash in
the center and char near the walls and at the top. The walls are coal which
can pyrolyze and produce gas and char. A 2:1 steam:oxygen mixture is injected
at a rate of 6 mol/s into the bottom center of the bed. A series of runs were
performed to determine what thickness of char bed at the wall would lead to a
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self sustaining system. What is meant here by self sustaining is simply that
calculated char bed production at the wall, estimated via the wall model of
Appendix D, is equal to the rate of char bed consumption near the wall but in

the bed.

Calculations were performed using all seven gas species on a coarse 6 x 6
grid. The initial bed temperature was set at 900 K so that the bed would
reach a fairly steady thermal profile before too much of the bed carbon was
consumed. A fairly steady-state was reached after about one hour of real
time. To compute the complete transient during start-up leading to this
steady-state required 35-40 minutes of computer time on a CDC 7600
machine.Figure 21 shows the rate of carbon production computed at the walls
and the amount of carbon consumed in the bed as a function of three assumed
char layer thicknesses. The computed wall regression rate, and thus the
computed carbon production rate, was very nearly constant in all three cases,
while the carbon consumption varied more or less linearly with char
thickness. The linear variation of carbon consumption is clearly related to
the greater abundance of carbon in the bed and the decrease in distance
between the injection point and the char/ash transition. The wall regression
rate indicates that the dominate resistance for heat transport to the coal
wall is the wall layer heat transport and not the proximity of the char/ash
transition. The figure indicates that the run made with a wall char bed
thickness of 7.5 cm is close to a self sustaining system, at least on the
average, since the rate of carbon consumption is very nearly equal to the
carbon production.

The bed temperature isotherms and gas fluxes near steady-state are shown in
Figures 22 and 23, respectively, for the 7.5 cm char thickness run. The gas
injection temperature is 400 K and the computed average wall temperature is
1100 K while the exit gas temperature is 1700 K. The temperature gradient
near the wall is not well represented by the coarse isotherms of Figure 22.
The sharp gradient at the bed top is a result of the char layer present at the
bed top. Although the average carbon consumption and production are nearly
balanced for the 7.5 cm case, local rates show some variation. In particular
the amount of carbon loss from the bed exceeds the local carbon production at
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the wall in the bottom portion of the bed. This local disparity is shown in
Figure 24. The rates over the top portion of the bed are, however, very
nearly equal. This behavior indicates that the char layer would tend to be
thinner near the bed bottom.

Also shown in Figure 24 is the computed local wall regression rates. They
indicate that the bed wall would move outward more rapidly at the top than

at the bottom in a truly self sustaining system. Also note that the average
wall regression rate of 7.7x10'7 m/s is only 0.07 m/day. This is a very low
rate and suggests that in order to obtain higher rates more characteristic of
field results (v 0.5 m/day) some additional physics not currently present in
GSF must be involved. It is our feelirg that the most 1ikely candidate is a
non-uniform permeability distribution. This hypothesis is explored in recent
related modeling work to be found in Grens and Thorsness (1985).

VI. CLOSURE

We have presented details of generalized model formulation for describing
reacting flows through packed beds. The model contains, among other things,
physically reasonable wall transport, transient models, many reactions and
species (including methane), various options on the boundary conditions,
rezoning capability, and variable transport properties, including effective
thermal and mass dispersions.

Results obtained from the present model (and the GSF computer code developed
from the model) show wide applicability of the code for characterizing various
reacting flows through packed beds. The situations we have tested are :
concentration and thermal waves travelling at very different velocities,
transient reacting wave motions, wall heat.transfer, and wall regression
processes. In all of these cases, the general model demonstrated its validity
by comparing favorably with other available studies. The present code also
demonstrated its workability for these disparate situations from the CPU
standpoint with reasonable number of cell sizes describing a packed bed

configuration.
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The model has also been applied to the introduction of a fluid into the
mid-point of a packed bed, and to the case of wall regression due to reactions
at the wall surface. Some preliminary results are obtained which show
promise; however, more analysis is needed before a definitvie statement can be
made on the applicability of the present model to these cases. Future plans
include : use of the GSF code for detailed examination of the phenomena taking
place inside a synthetic coal (scale model); scoping of important machanisms
for packed-bed flows at various conditions of temperature, pressure, particle
size, etc., evaluating the validity of other simplified models. We also plan
to investigate the feasibility of modifying the present upwind differencing
capability to improve the numerical integration scheme, along with an
alternative numerical approach which is more efficient from the computer
storage and time management viewpoint. Other plans are to continue analysis
of the peak-temperature near the reaction front, two dimensional drying
problem, the wall-growth problem, incorporation of the momentum equation into
the model rather than using the Darcy equation, and finally the water-influx
problem involved in the underground coal gasification phenomena.
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NOMENCLATURE

Pre-exponential rate constant

Reaction rate used in regeneration problem (1/s)

Total gas concentration

Concentration of gas species i

Equilibrium concentration of a gas

Average gas heat capacity

Effective heat capacity of material passing
through the wall -- see Fq.(D.3)

Average solid heat capacity

Effective superficial mass dispersion in bed

Effective gas diffusivity inside a particle

Average molecular diffusivity

Diameter

Ash particle diameter

Particle diameter

Unreacted particle diameter

Initial particle diameter

Activation enerqy for rate constant

Fraction of original carbon remaining

Ash particle size fraction

Mass fraction of water in the coal

Average molar gas flux

Heat of vaporization of water in the coal

Heat transfer coefficient

Heat transfer coefficient corrected for high
mass flux -- see Eg.(D.3)

Enthalpy of gas species i

Enthalpy of solid species k

Total flux of gas species 1
Effective bed thermal conductivity
Gas film mass transfer coefficient
Reaction rate constant

(1/s)

(mo]/m3)
(mo]/m3)
(mo]/m3)
(3/mo1-K)

(d/mo1-K)
(3/kg-K)
(m?/s)
(m?/s)
(m?/s)
(m)

(m)

(m)

(m)

(m)
(J/mol)

(mo]/mz-s)

(J/kq)
(w/mz-K)

(w/mz-K)
(J/mol)

(3/kg)
(mol/mz-s)
(W/m-K)
(m?/s)
(1/s)
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Heat of reaction

Molecular weight of species i

Number of solid species

Number of particles per volume of bed
Number of ash particles per voiume of bed
Number of gas species

Numbeer od dependent variables

Number of nodes in x-direction

Number of nodes in y-direction
Pressure

Heat flux at drying front -- Eq.(D.1)
Heat flux at wall -- Eq.(D.1)

Rate of species introduced into flow
Gas constant

Reaction rate per volume of bed
Intrinsic reaction rate
Intrinsic rate of reaction 1

Dimensionless heat of vaporization -- seé Eq.(D.9)

Schmidt number
Species i gas source per volume of bed

Solid species k source per volume of bed

Solid carbon source per volume of bed
= Temperature at position x,y at time t

Bulk-gas temperature in bed -- Appendix D
Drying-front temperature -- Appendix D
Wall failure temperature -- Appendix D
Injected gas temperature
Temperature of input solid

Time

Superficial gas velocity

Wall recession rate -- see Appendix D

Gas superficial mass velocity in bed
Effective gas velocity

(d/kg)
(Kg/moli)

(1/m3)
(1/m3)

(Pa)

(W/m?)

(W/m?)
(mo]/m3-s)
(J/mol1-K) or
(Pa-m3/m01-K)
(mol/m3-s)
(mo]/m3-s)
(mo]/ms-s)

(mol/m3-s)

(kg/m°-s)

(kg/m3-s)
(K)

(K)

(K)

(K)

(K)

(K)

(s)

(m/s)
(m/s)
(kg/n’-s)
(m/s)
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Vint = Interstitial velocity (m/s)
Ve = Superticial SOlig velocity \n/s)
Veo = >uperticial Sol1a velocity at the pottom Oof tne ped \nys)

W = Heat source 1ntroduced into the tlow (w/m3)
L = [ni1ti1al weignt Traction OT ash 1n solid

W, = Mass traction carbon 1n solia

L = In1tial weight Traction or carbon 1n sol1id

W = Mass traction ot sol1a species K

X = Horizontal coordinate (m)

y = Vertical coordinate (m)

¥; = Mole traction ot species 1

a = Fraction ot combusted carbon going directly to carbon monoxide

r = Permeability (mz)

n = Reaction ettectiveness tactor

" = Average gas viscosity (Pa-s)
E = Dried/pyrolyzed coal-layer thickness -- see Appendix U (m)

0 = QGas density (kg/m3)
P = Average density of solid particle (kg/m:)
p. = Carbon density in unreacted solid (kg/ms)
p* = Reactive solid density {(kg/m~)
T = Thiele modulus

¢ = Total porosity in the bed

L = Bed porosity external to particles

Pint = Porosity internal toc a particle

¥ = Dimensionless temperature in coal layer -- Eqg.(D.9)

Q = Ratio of the heat carried by the mass flux into

the bed to the gross heat flux to the wall by
convective mechanism -- Eq.(D.3)



Subscripts
a = ash
c = carbon
e = external condition
g = gas
i = gas species: 1 - N2;
2 - 02;
3 - Hz;
4 - CO;
-5 - C02;
7 - CH4
k = solid species: 1 - carbon;
2 - ash
= solid
w = water

initial condition

(o)
]

-47-
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APPENDIX A. PARTICLE SIZE AND RELATED KINETIC PARAMETERS

Both the SP and AS kinetics models given in Eqs.(9) and (10) require several
parameters to be calculated. These are the various particle diameters (dp,

d,, and da)’ the particle number densities (N and Na)’ the gas film mass
transfer coefficient (kc), the effective mass diffusivity inside a particle
(De), and the effectiveness factor (n). Different relations are used for
the particle sizes and number densities depending on the kinetic and solid
motion assumptions made. For all assumptions the basic film coefficient and
effectiveness factor relations are the same.

Mass and volume conservation in the packed bed has been used to determine
these parameters. In particular, the following terms are introduced:

a= wg(ﬂII/DI); b = (mA/mC)O;

g = (14,)/(04,) 5 Q= (14)F,u/p;;(14,)

where the term wg denotes the initial mass fraction of ash in the

particle, I and II the the ash zone and the unreacted char+ash zone,
respectively, b the original mass ratio of the ash and char, Q a measure of
the char remaining in the unreacted portion of the particle, F4 the carbon
density in bed calculated from the GSF code as a part of the solution, and the

subscript o the initial condition.

Case 1. Constant solid velocity (v_ = constant).
For the case of a zero solid velocity or constant imposed bed velocity and

constant char-particle number density, the expressions for the particle size

are:

SP model:

dp = d° (A.1)

.
I

1/3 :
=d; Q (A.2)

N =N, = 6(1 -¢,)/xd 1] (A.3)
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AS model:
dy = 4y (A.4)
d, = d. 0'/3 (A.5)
dy = f d | : (A.6)
N = Ny = 6(1 - )/xd] (A.7)
Ny = N[1/g - 0]/ ¢ | (n.8)

Case 2. Constant bed -- (1-¢ Jo = constant.

The relations for the case i; wﬂich the constant bed density assumption is
made are however slightly more complicated. The equations for particle size
and number density for the constant bed density assumption are the following.

SP model:
dy=d, [ a/(1-(1-a) 9 Q) 13 (A.9)
4, =4 (a0)'/3 (A-10)
N=6(1 -4 )] (A.11)
AS model:
dy = d, (A.12)

d, = d[20 0/ (1-(1-2) 4 037"/ (A.13)
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d, = f d, (A.14)
N =600 -eg) 0/ [x¢)] (A.15)
= 6(1 - ¢,) (1-90) / [xd}] (A.16)

Mass-transfer Coefficient (k_) .

Employing appropriate partic;e size from the above equations, we can obtain
the external mass transfer coefficient used in the rate expressions. From Sen
Gupta and Theodus (1963):

kt=_2'%8RT (sc)-o.ogz( PD )0_575 (A.]7)

ep gRTad,

Effectiveness Factor (n).
From Yoon et al. (1978) the effectiveness factor for the heterogeous reactions

is given by
7 tanh (37) 37
where the term ¢ denotes Thiele modulus defined to be
d, k; p
T= : '
6 VD, (A.19)

with the effective diffusivity approximated by De = ®int Dm.
In Eq.(A.19), the ternlp*'signifies the density of carbon in the unreacted
particle, and the poros1ty¢int used in the effective d1ffus1v1ty is that
of the unreacted particle. For the water-gas-shift reaction p 1s the total
mass density of the ash (or unreacted particle), and corresponding $int is
utilized to obtain the effective diffusivity.
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APPENDIX B. TRANSPORT PROPERTIES

Various physical properties are needed in calculating the physico-chemical
characteristics of a packed-bed flow. These properties are the viscosity and
the specific heat of the gas, the thermal conductivity and the specific heat
of the solid. For these four properties, we assume a linear change with
temperature, i.e.,

F(T)=a+bT,
with prescribed a and b.

(1). Viscosity ( gas ).
In the present model we use; a = 4 (10'6) kg/m-K ;

b = 2.93 (1079).
(2). Specific heat ( gas ).

We use: a =297 J/mol-K ; b =1.2 (107%) .
(3). Thermal conductivity ( solid ).
We use: ar= 103 J/kg-K ; b = 0.
(4). Specific heat ( solid ).
We use: a =0.4 Wm-K ; b =0.

In addition, mass and thermal dispersions were found to take place in
packed-bed flows (see, for example, Coberly and Marshall 1951, Deissler and
Boegli 1958). These dispersions depend upon such physical factors as the
porosity and the Reynolds number. We thus need to characterize these
"effective" thermal and mass dispersion parameters.

Effective thermal dispersion coefficient (Perpendicular to flow
direction) .Here we use the empirical correlation of Wakao and Kaguei (1982;
see also Yagi and Kunii 1957):
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kgff/kg . k°/kg + 0.1 Re Pr (B.1)
where the symbol keff denotes effective thermal "conductivity", Pr the

Prandt1 number, i.e., Pr = yc /k_, k_ the gas thermal conductivity, Re

the Reynolds number based upon the superficial velocity (U), and the particle
diameter (d ), i.e., Re = Udpo/u, and the subscript p the direction
perpend1cu1ar to the flow direction. The term ko signifies effective"

thermal conductivity (including the radiation effects) for the quiescent case,

and expressed as:

k°/kg =0 Nu, + (1 =) [ky/kg + 1/(25 + Nug)] (8.2)
The "Nusselt" numbers for the vapor gas and the solid are defined to be:

Nu, = (dp/kg)(o.zzsa)(T/100)3/[1+{¢e/(1-¢e)}(l-e)/(ze)]

and  MNug = (dp/kg)(0.2268)(T/100)3 [e/(2 - ¢)].

Figure B-1 shows sample behavior of the effective radial thermal dispersion,
in this case as a function of temperature. The conditions used are Pr = 0.7,
Sc = 0.6, Particle diameter = 0.025 m, Re = 87 (based on particle diameter),
and the gas-mixture molecular weight = 0.0204 kg/mol1. Note the increase of
almost two decades at 1800 K from room temperature. This is mainly due to the
radiative effects becoming dominant at temperatures above 1300 K.

Effective thermal dispersion coefficient (flow direction).
For the expression for the effective thermal conductivity in the axial
direction, we use that obtained by Wakao and Kaguei (1982):

keff/k = k°/kg + 0.5 Re Pr (B.3)

where the subscript f refers to the flow direction, and all other terms have
been defined in Eq.(B.1). The magnitude changes with temperature are also
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shown in Figure B-1. We observe that the relative magnitude between the axial
and the radial thermal dispersions is small at high temperature, due largely
to the radiative effects dominating in both directions.

Effective mass dispersion coefficient (Perpendicular to flow direction).Here
we use the empirical correlation obtained by Bischoff (1969) for the effective

radial mass dispersivity, expressed as :

of f _
Dp /Dg = 0.73 $a + 0.1 Re Sc (8.4)

and where the symbol Deff denotes effective mass dispersion coefficient, Sc
the Schmidt number defined to be the ratio of the kinematic viscosity and the
molecular gas diffusivity (Dq), j.e., Sc = u/qu-

Figure B-2 shows typical behavior of the radial mass dispersion coefficient as
a function of temperature. Relatively gradual increase in the value is seen
with increasing temperature, unlike the effective thermal dispersion

coefficients.

Effective mass dispersion coefficient (Flow direction).
For the axial coefficient we applv the correlation obtained by Fdwards and

Richardson ( 1968 ) :

Dgff/Dg = 0.73 4ot 0.5 (Re Sc)2/(9.7 oot ReSc) (B.5)

where the terms have already been defined in Eq.(B.4). The variation of this
coefficient with temperature is also shown in Figure B-2. Note that the
effective dispersion coefficients retain their relatively large differences at
all temperatures. This is in contrast to the effective thermal coefficients,
for which the radiative effects become dominant at high temperatures.
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APPENDIX C, NUMERICAL-SOLUTION PROCEDURES

In this section we describe in detail the procedures adopted in numerically solivng the partial differential
equations by using a finite-difference method. First we give a generalized treatment of the numerical
scheme used to express the PDE’s. Second, we give specific descriptions of the various conservation

equations.
C.1. Generalized Treatment of PDE’s.

We note that the conservation equations given in Eqs.(1)-(6) share a common form, viz., they contain
transient, gas and solid fluxes,

diffusion, and source terms. Therefore, we consider a generic

equation embodying these terms, and express it in a

finite-difference form amenable to numerical solution.

The generalized partial differential equation is expressed in the form :

9A _ L[ VG Ga-aVh)+5) €1

whu'ethetermAdenotesadependentvamble amdbdlemuluphcanvem,fﬂxeﬂuxforgasspecws,
g the flux for solid phase, 7 and J, the flux terms, h the diffusion, and S the source term. These terms contain
the dependent variables of actual interest, such as the temperature, the species mole fraction, which can be
determined once the PDE’s have been solved.

In a rectangular coordinate system Eq.(C.1) can be written
%= S @ +ait-adh- -%(ﬁ’+ 4 a%%) +8 ] (C2)

andforacylindticalsysﬁemwehave'(xdmoﬁngtheradialdirecﬁon)
B = -1 Lo+ xgit-axdl) - T+ gir-adh 4] €3)

Now consider an interior node point at (M,N) shown in Fig. C.1.
The transient term dA/dt is evaluated at node (M,N) such that dA/ot = dAp/0t , and the multiplicative
term b and the source term S are also evaluated at the node point (M,N).
The flux terms for the gases and the solids are of the same form, and can be expressed as follows.
BT Tra LR VRVEIET WRVY VRIS
+ e LEPhaptn ~C a1 ] €4
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where for a rectangular system Qw128 = Om-12N= Oy =1
and for a cylindrical system Q12 = xil; Qnv12 = x8; Qn = (x88 + x4 ¥/2.

Now the terms j are :
fuwinn: flux or velocity across the right boundary of of cell M,)N ;
jf-1an:  flux or velocity across the left boundary of cell M,N ;
j¥ner:  flux or velocity across the top boundary of cell M,N ;

j¥n-12 ¢ flux or velocity across the bottom boundary of cell M,N ;

and the functions f are :
fisan: £ evaluated at node M,N for jf.12n>0, and at node M+1,N for jf12,n<0 ;

fy-12, : f evaluated at node M-1,N for ji-12n>0 , and at node M,N for jf-12n<0 ;

fuunetr : f evaluated at node M,N for jlns12>0 , and at node M,N+1 for jlwaz<0 ;

fisn-1n2 - £ evaluated at node M,N-1 for jin-12>0, and at node M,N for j¥in-12<0 ;

The diffusion term is expressed as :

V.(aVh) = 1 [ Qmun (a oh Ms1oN— Oean (2 oh M-12N]
Thalzm ox oX
+ g 10 - @ havia]

where

oh - gy — B )
(8 G i = BN Loy

dh _ (hvyn—hyean)
R
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oh _ (hves — by )
(‘W)H.N'-m = alﬂ\‘i-m—z'm:ﬁ—

T )
@Gy Mp-va =B~y s

aums2N © aevaluated at right boundary of cell M\N ;
ap 1N ¢ aevaluated at left boundary of cell M,N ;
amn:12 ¢ aevaluated at upper boundary of cell M,N ;

amn-172 - aevaluated at lower boundary of cell M,N .

C.2. Boundary Conditions.

The boundary conditions are applied at boundary cells by formally integrating across the boundary to
obtain the following general form ( applied at M=1 or at M=ny ) :

(L= g [ Tl ~Oresrn Phastran + Ore-alf Phe-tr
~ Q112® i1 N + OM12E T IM-12.N
+ @08 nenn - (20 P hesax]

+ 8l e~ e+ (o P+ S 1

where the f j* and g }} terms are defined as in the previous development at the interior boundary and are
given by the conditions at the exterior boundary.
The f §¥ and g jJ terms are similar and are given by the form :

(- e = il e~ EPhepe-1r]

Terms on the right are defined as previously given.

The a3l terms are defined s in the previous development at the interior boundary and are given by the
conditions at the exterior boundary. Finally we have :

[;"’;(a%)m= A=l (a%%)mwz - (a%%m.m 1
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Terms on the right are defined as previously given.

The oh/ox terms at the outer boundary are found by invoking flux continuity there, ie., flux- = flux*,
where the signs + and - refer to values just inside and outside the boundary, respectively.

For the right-hand boundary :
flux- = (f'j* i ~ @ R
ux~ = (412N + i +12N (a'a'x—)n,ﬂlz,n.

flux* = given by boundary conditions.
For the left-hand boundary :

flux- = given by boundary conditions.
fluxt = (£ i - @30
ENn-12x+ @ Jih-128 — (agg h-12N

For the bottom (or top ) boundary (N=1 or N=ny ) :

(M= e [P harvs + P10~ @ Whavain + € iDhagein
+ @i - G310
+ AN~ (U~ T 5 (Ui
+ (a0 P+ Sun 11

where the fjY and gjy terms are defined as in the previous development at the interior boundary and are
given by conditions at the exterior boundary. The fjx and gj§ terms are similar and are given by the form :

[ (O P han= o [Cas2(E Phasiany ~ Dot Pne-im]
Terms on the right are defined as previously given. The adh/dy terms are defined as in the previous
development at the interior boundary and are given by conditions at the exterior boundary. Finally,
(0§ hen= gt @3 G nesnn - @38 nenn]
Terms on the right are defined as previously given,
The oh/dy terms at the outer boundary are found by invoking flux continuity at the outer boundary.

For the top boundary :
fux™ = (F gz + € Densn ~ @G hasuz 3
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flux* : given by boundary conditions.
For the bottom boundary :
flux-: given by boundary conditions.

fluxt = (i) 112 + @ JM1-12~ (a%)m-m

C.3. Specific Descriptions of Conservation Equations.

Now that finite-difference forms have been developed for a generic PDE in the previous section, we
proceed to describe some specific forms relevant to each conservation equation.

C.3.1. Qverall Gas Balance: Eq.(1).

In terms of Eq.(C.1), we have :
A=$C
b=1
f=0C=A
7-v
g=0

J=0
a=0
h=0

s-gqﬁgs.. which yields

F00=—V.00n+ 3Q+y

that is, Eq.(1). Here the term (Qun denotes the gas species introduced along the wall (where appropriate),
(8N the source terms arising from reactions taking
place in the cell, given by ;

Si=§ i Tj

where ay is the stoichiometric coefficient for gas species i in reaction j, and r; is the rate of reaction j per
unit volume of bed.

The velocity vector V used in this equation and elsewhere is obtained from the variable ¢C by as follows.
The velocity is composed of x and y components whose values are defined at cell boundaries. These
velocities are based on the ideal-gas and the Darcy laws, i.e.,

Ideal gas law C=R?T- H

Darcy law ﬁ=-—%VP.
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First the pressure is determined from
Pry = @OMNTMN R-@'E

We now introduce the term mobility B for a given cell defined as
I
Prex= e
To calculate the velocity in the cells we need to evaluate the mobilities across interfaces. For simplicity a
straight arithmetic average is chosen here. The notation 1/2 signifies interface values.
BMHH..N = N+ BMi'l

Baire = Bu + Buavnt

The true gas velocities are then obtained by using Darcy’s law and the relation : §v¥=T .

_ Bmian (Pmn — PmaaN)
Vi = OMe12N (XMe1 —~ XM)

_ 12 — Pyvne1)
Viiin = dMN+12 (XM — Xm)
The superscripts on the velocity terms denote the x and y directions.

For consistency with the vpwind defference scheme used in conservation equations, the appropriate
porosities ¢ used above are defined as

dmunN= Omn  for viupn>0;
omuN for viinn<O;
dvnein= dun  for vilinun > 0;

oMy for viNez <05

These reactions are for the right and upper boundaries of each cell. Those for the left and lower boundaries
are obtained >from the above by decrementing M or N by one,

Boundary Conditions :

For outflow condition, we vsually prescribe the value of the exit pressure across the top boundary.
However, we use the following :

Here @ is a large positive number ( ~ 100 ) and the y distance is included to retain proper length scaling.
This approach results in Py, being set very nearly equal to Pus , and is utilized here to maintain the
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conservative nature of the gas flow.
At the inflow boundary nodes Iocated at the bottom of the system, we have :
€iM1-12 = (9C) VM i-12 = E;Fi

where F, are the injection rates per unit inflow area of gas species i. Note that this formulation is equivalent
to setting v¥ = 0 at the bottom and treating the inflow as a source term, like Q; , after multiplying F; by the
area/volume ratio of the injection cell to put the inflow on a per unit volume basis.

At all other boundaries, a no-flow condition is invoked by setting to zero the ¢CV evaluated at these
oundaries.

The true gas velocities are then obtained by using Darcy’s law and the relation : ¢ov="0.
— Bwi1nN (Pvx —PmuN)
VénN MmN (XMe1 — XM)

_ Bmpii Pvn — Pupve)
vitNin = OMN+12 (X1 — Xn)

The superscripts on the velocity terms denote the x and y directions.

For consistency with the upwind defference scheme used in conservation equations, the appropriate
porosities ¢ used above are defined as

dmnN= dMn for viuipn>0;
oM N for viuinn<O0;
%.‘Nllﬂ= m fa th.ln > 0;

dmne  for vinen <0;

These reactions are for the right and upper boundaries of each cell. Those for the left and lower boundaries
are obtained >from the above by decrementing M or N by one.

Boundary Conditions :
For outflow condition, we usually prescribe the value of the exit pressure across the top boundary.

However, we use the following :
' (Pra, ~ Pout)
i =Putn &7 15 Ty

Here © is a large positive number ( ~ 100 ) and the y distance is included to retain proper length scaling.
This approach results in Py being set very nearly equal to Pox , and is utilized here to maintain the
conservative nature of the gas flow.

At the inflow boundary nodes located at the bottom of the system, we have ;

€112 = (9O VM1-12 = gFi
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where F, are the injection rates per unit inflow area of gas species i. Note that this formulation is equivalent
to setting v¥ = 0 at the bottom and treating the inflow as a source term, like Q; , after multiplying F; by the
area/volume ratio of the injection cell to put the inflow on a per unit volume basis.

At all other boundaries, a no-flow condition is invoked by setting to zero the ¢CV evaluated at these
boundaries.

C.3.2. Gas Species Conservation: Eq.(2).

Here we have A = ¢c;;

Substitution of these terms in Eq.(C.1) yields

S 00D =-V.(4ai¥+ CDVy )+ Qi+,
which is Eq.(2), as expected. The terms Q; and s; are gas-source terms, and ¥ term is the true gas velocity
as previously defined.

Now
a2 N = Cumer12N Dtz

where

Cumszn =05 [(ﬁ‘;ﬂ + (m;.nl

Dmiian = Mass dispersion coefficient at the right-cell boundary. Its magnitude is obtained by using
correlation described in Appendix B and the following dependent variables :
CwmaaN - previously defined ;
Tmsindo @dMeinn O @z Nadmane Nvuzne OManN

all defined by simple average of M,N and M+1,N values. Here ® is gas molecular weight expressed as
kg/mol.

Also,
WmaaN=05 [ (W, + W, I Cmnn = 05 e, + G, 1

V= given by vfieN & + ViioN B,

wher vfii.1,N is given as previously defined, and v¥u12n is obtained >from the following average :
V12N = 0.25] V¥INe12 + VR N-12+ VN Ne12 + VR N-12 ]
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Dmn+12 = Mass dispersion coefficient at the top cell boundary. The values used in the correlation are
obtained in a manner completely analogous to those for the Dyy1/2)n coefficient except the roles of M and

N are reversed.

Boundary conditions :
For outflow or top boundary, we have :
flux = (960" Va1 = (CD P haasn
flux* = [(¢ci)* vV Ima 12 -
This results in (%;l)m,m =0.
For inflow or bottom boundary :

flux— = (F))x,

flux* = [($c)* VIM1-12— (CD%yyi)M,l—ln
This then results in ;
(%}yl)m-m = m [ (dcim,1 vi112 — (Fidx, ]
For cases in which Fy = 0, vaq1_17 is taken as zero, yielding (%lm_m -0.

Side boundaries :
Both side boundaries are taken as no-flow boundaries and therefore we have
(%y,-‘i-)bmdny =0.

C.3.3. Solid Species Conservation: Eq.(3).

We have :
A = (1—be)pati
b=1
_t;=0
j=0
g=(1-de)psix = A
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-

="
a=0
h=0
S=S¢
These terms in Eq.(C.1) yields
2 [1-Ge)puon] =~V [(1-de)pu0Til + S

which is Eq.(3), as expected. We now describe these terms.

(Sx)m,N = solid source terms arising from reactions taking place in the cell, and is expressed as
S; = ﬁ (!1;; n
F

where aj is the stoichiometric
coefficient in appropriate units (kg/mol of reaction) for solid species k in reaction j.
(v )Mz & Solid velocity in x-direction is always zero.

(vid)Mn+12 : Solid velocities in the vertical direction at the cell-top boundary. This is obtained from one of
two different relations depending on the assumed physics, i.e.,
Assumption 1 : Constant solid velocity.
The velocity is prescribed as a fixed value,
including the zero solid-motion case with
v¢=0.
Assumption 2 : Constant bed density.

Here the local solid velocity is obtained by
Eq.(8). In discretized form this becomes

( g SOMN
VMp2 = (ViMN-12 + AYN-T-,

with (v)MN1-172 = (Va)o-

Boundary conditions :

Along the top boundary the inflow (solid) composition is set equal to given values, i.e.,
(gi!)M.n,ﬂn = (1'¢o)(Ps)o(‘Dk)o(VnM,n,+u2

where (wy), is the input weight fraction of solid species " k ".

Along the bottom boundary the solid composition at the boundary node is used in the outflow term, i.e.,
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€iNM1-172 = [ (1-0e)Pat)Mm,1 (VM 1-12

No special condition need be applied at the side boundaries, since v¥ is taken as zero everywhere,

C.3.4. Energy Conservation: Eq.(5).

We have :
A=T
b= dcp3ici+ (1-de)peca g o
f=h
]’='j; and summed over i=1,n
g = (14,3 (0ch)
-
="
a=k
h=T=A

Bacause the temperature T is a property of interest, we rewrite Eq.(5) to obtain explicitly the time derivate
of T: .

aT 1 -
- V6D
at tbep3ici+ (1-0pecl %

+v.(1—¢.)p.g(m.h;) ~kVT]+W]

with J; = ¢c;¥ — CDVy,

As for (1-¢.)ps : The solid-bed density is obtained in one of two ways, depending on the physical
assumptions made. This is coupled directly to the previous assumptions related to the solid velocity.

Assumption 1 : Constant solid velocity.
This now implies variable solid density, i.e.,

Assumption 2 : Constant bed density.
This condition gives

(1~9e)Pa)n = [ (1-de)pelo
where the right-hand-side denotes the initial bed density.

kms12n : Effective bed thermal conductivity at the right
cell boundary obtained using the comrelations
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described in Appendix B. The required dependent
variables are defined in the same manner as

those previously given for the dispersion
coefficient Dyv1r2-1 -

kmnyirz : Effective bed thermal conductivity at the top
cell boundary. The values used in the correlations
are obtained in the same manner as those for the
dispersion coefficient Dy -

Boundary conditions :

Although a variety of conditions can be imposed on the thermal equation, two regions are always handled
the same way. These are the left-side ( or symmetry ) plane and the injection nodes.

The symmetry plane : Here M=1, and the temperature gradient is set to zero, as is the flux term, i.e.,

(%%)1—1:2.1\! =0:

Fixi-1nn= (f;hijiV')l-m.N =0.
=
The injection node : This is located at the bottom plane, N=1. We invoke the continuity condition ;
flux” = @Fihi, + [(D(1-0e)ps axhy Ir,,
flux® = EhiPhasoin+ [ODI-0IPZubE has-sm — Knts-1a Fohas-im

Since the solids are assumed to leave at the same temperature as the bottom cell, the solid term vanishes,
and the above relation is solved for the temperature-gradient term :

(%%“)M,l-llz = m [ (gh‘di’)M.t—uz - lgFihi 1

Top (outflow) cells : Two different types of conditions are applied, i.e., zero conduction and radiant heat
transfer. Both of these cases are handled by invoking an energy-flux continuity condition at the outflow

plane ;

fux~ = (B 37 aeia + [ V2 (1-0e) Po 3, @ b Iaasira~ gt (mauin ;

flux* = (J ¥ Wain + (Wmapin (10e) Po 3 o (i, + S (Thos, ~ T4)

Therefore, we have :

(Fhagna = g [0 (10000 5 0 heorn
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= (a1 (1) Po 3 O (i, — S (Then,~ T2) ]

For the zero-radiant transport case, S = 0, and the last term in the temperature-gradient expression
vanishes.

Right-side ( wall ) cells :

Three different types of boundary conditions are applied here : (1) adiabatic ; (2) wall heat transfer ; (3)
wall heat transfer coupled to wall drying/pyrolysis.

All of these conditions are handled by invoking energy-flux conservation at the center boundary, i.e.,

fluc = kg (Jhlgan ;

flux* = hy (Tan—Tw) + Qo .

Therefore, we have :
(Gt = = b (b (Ty=Tw) + @ 1

Here Qp is a heat load associated with wall drying and pyrolysis and has been defined earlier,

For the adiabatic case, hw=0 and Qp=0.
For the wall heat- transfer case, Qp=0. In practice the heat-load term Qp is used as a heat-sink term W

in the equations by putting it on a per unit volume basis.

Bottom, non-inflow cells : The same three conditions used for the wall cells can be applied along these
bottom cells which are not injection cells, and are handled in a completely analogous manner.

flux™ = by (Tva-Tw) + Qp .

fluxt = —kmun (%T;(-)M.Hm

Therefore, we have :
(Fohessin = = i [ B (Thas=Tw) + Qo )
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APPENDIX D. WALL RECESSION-RATE MODEL

(This is based on the heat-transfer model developed by Grens and Thorsness
1984).

The wall recession-rate model represents the situation shown in Figure D.1,
where the coordinate Z moves along the recession of the cavity wall with
velocity u. Although this is not a steady-state process, the transient terms
arising in heat transport into the wet coal (Landau 1950) have little effect
on the time scale of coal gasification and can be ignored (Mondy and Blottner
1982). Thus the process is considered in the quasi-steady state, and the
drying front (T = Td) remains at a constant distance ¢ from the cavity

wall (T = Tf). At the wall the dried/pyrolyzed coal degrades to rubble by
thermo-mechanical failure with no heat effect, and at the drying front the net
heat flux must provide heat to dry the coal at the rate of davance of front u.

Under these conditions, with negligible heat of pyrolysis, all heat fluxes
involved must be equal and constant, these heat fluxes being to the wall from
the bed (Of), through the wall layer (0), and at the drying front (Qd),

i.e.,
= = 0
nf=0"0d—Up HVfW (D.])

where,;o is the density of the wel coal, Hv the heat of vaporization of

the water in the coal, and fw is the mass fraction of the water. Then, if
the char-failure temperature is specified, the wall recession rate (u) can be
determined directly by the convective heat transfer from the bed to the wall.

ND.1. Heat Transfer to Wall of Char Bed.

The transfer of heat to the walls of packed beds has been extensively studied
and reasonably well characterized except for cases of very Tow Reynolds
numbers or high solid-particle conductivities (Dixon and Cresswell 1979);
neither obtains here. The correlation of Yagi and Wakao (1959) provides a
good representation of heat transfer coefficient (h) to the wall:
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‘c:lV'Pr”’={0.6Rem (Re<40) ;

02Re®2 (Re>40),
(D.2)

where Pr is the Prandt] number in the bed, Re the Reynolds number defined to
be pdeﬁ,, cg the gas heat capacity, y the viscosity, and dp the

effective diameter of bed particles. The values of h given by this
correlation are in good agreement with those found by Calderbank and Pogorsky

(1957) at high Reynolds numbers.

However, the heat-transfer coefficient given by the above correlation must be
corrected by the effect of high adverse mass flux from the wall during cavity
growth. This flux arises in the flow of water vapor and pyrolysis aases from
the wall (and by wall movement), and serves to reduce thermal gradients in the
bed near the wall. Tt thus leads to lower heat-transfer coefficients than
would be found in the absence of such flux. The correction for high mass flux
is not sensitive to the model for heat transfer at the wall; corrections based
on simple film models are adequate. Such a correction based on the treatment
of Colburn and Drew (1937) can be expressed in the form :

R _ Inl .3
T__La_m (D.3)

where

Q= 9P%um(Ts —Tp) =_((To—Tp)
Qr+up%en(Tr~Ty) 0 +(Ir—Tg)

The term h® denotes the heat-transfer coefficient corrected for high mass
flux, e* = vaw/cm, 9 the ratio of the heat carried by the mass

flux into the bed to the gross heat flux to the wall by the convective
mechanism, and Cn the effective heat capacity of the material passing
through the wall, represented by
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c = fwc

+
m W ch

q + fscs (D.4)

the subscripts g ans s denoting the pyrolysis gas and the solid material,
respectively.

Now the corrected heat-transfer coefficient can be used to calculate 0f
in Eq.(D.1):

_ 0 0 _ 0

This expression is then solved for the recession rate, which is the velocity u
at the wall:

ho(Tb ~T¢)

upocm=m=h°ﬂ=h]n(l+g) (D.ﬁ)
and therefore
u=—t_pa+0)
Ca P (n.7)

If the wall temperature is high enough for gasification reactions to occur,
this model can still provide wall recession rates, assuming that adequate
amount of steam is present to gasify the char at the wall at its
heat-transfer-limited rate; usually only little steam must be supplied from
the bed for this condition to obtain. The wall temperature is set such that
C/HZO reaction becomes fast, and the value of Hv js increased to account
for the endothermic heat of gasification of the char at the wall.
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The results of this heat-transfer calculation do not involve any detailed
description of the phenomena in the wall layer, only the characteristic that,
for a constant heat flux to the wall, the wall recedes at a constant velocity
in the quasi-steady state. If the thermo-mechanical behavior of the wall is
characterized by a breakdown temperature (Tf is specified), this is all that
is required for the wall recession-rate representation.If the wall-behavior is
parameterized by a failure thickness (¢ is specified), an examination of
transport in the wall layer is necessary.

D.?2. Heat Transfer in the Dried/Pyrolyzed Coal Layer.

The wall layer thickness £, the wall temperature Tf, and the recession

rate u are related by transport (and other) mechanisms in the wall layer.
Here these are considered in a greatly simplified form and at the quasi-state
state; this is appropriate for representing the thermo-mechanical behavior by
a single failure thickness. A more comprehensive examination of these
mechanisms at the quasi-state state has been presented by Massaquoi and Riggs

(1981).

For the present treatment we assume constant effective thermal conductivity k
and constant overall heat capacity C (as defined in Eq.(D.4)) in the layer,
negligible heat of pyrolysis, no gasification reactions, and isobaric
conditions. Then the heat flux 0 in the layer for Eq.(D.1) is given by

0 = kdT/dZ -u pocm(T-Td) =u p°vaw (D.8)

with the boundary conditions

L]
—
"
—_
Q

Fquation(D.8) is recast in the nondimensional form

de/dg +9 = -S (D.9)

with the boundary conditions



t = (up’cg)/k: ¢ =0
where ¢=(T-Td)/(Tf-Td), r=(u pOCmZ)/k, and
S=(H,f, ) /Lc,(Te-Ty)l.
Equation (9) has the solution:

v =-S+ (1 +S)exp (-z) (D.10})
with the eigenvalue requirement on u:

U= b+ ) (D.11)

Equations (7) and (11) can be solved simultaneously for Tf, and then either
equation can be used to determine the wall recession rate u.

Having obtained the wall-regression rate u, we can now calculate the species-
production rates as follows.

si=ug _"VTM(,:_M

(D.12)

where AX,. denotes the cell volume divided by cell area parallel to the

wall, which arises from inteqrating over boundary cell and applying boundary
condition and not directly from volume/area ratio, Cs the gas composition of
produced aas in mole fraction, and the p terms the densities in the wall and
the bed, respectively. It is this change in the density from that of the wall
and the bed which produces the various species near the wall. The values of
these bed and wall densities should be chosen - in some cases artificial
density values - so as to yield appropriate gas evolution at the wall region.
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APPENDIX E. ANALYTIC SOLUTION FOR RADIATIVE TRANSPORT AT BED EXIT

The case of zero radiant loss at the bed exit has already been treated in the
section on the verification (Sec. IV, case 4). Here we present a closed-form
solution for a one-dimensional flow with radiant heat loss at the bed exit
plane. To recapitulate, we have:

2 N
k d?T/dy? -(CUc,)dT/dy - (hA/A)(T - T,) = 0 (37)

where the term h denotes the heat-transfer coefficient (taken to be a constant
here), As/Ac the ratio of the bed surface area to the cross-sectional area
of the bed, and the other terms have their usual meanings.

with the Boundary conditions

inlet (y = 0) ; CchUTinj = chUT - kdT/dy

g

4 ).

. _ 4
L) 5 - kdT/dy = S(T° = T .oy

exit (y

where the term S is a function denoting combination of the radiation shape
factor, the emissivity of the flowing gas, and the Stefan-Boltzmann constant.

The analytic solution to Eq.(37) is :
T(y) - T, = A exp(0,y) + B exp(-0,y) . (E.T)
where p = chU/k ; q= (hAp/kAc) 3 0]=(p2+4q)]/?;

and 02=(0]+p)/? : 03=(0]-p)/2.

The coefficients A and B can be determined from the boundary conditions.
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The condition at y=0 yields

Z] A+ Z2 B = Z3 (E.2)

where Z] G cg -k 02 : 22 =G cg + k 03 ;

T.).

z inj ~ 'w

3=6G cg (T

From the condition at y=L we obtain
S[QA+QB+T) -1 1=-2A+28 (E.3)
4 5 W amb 4 5 *
where S = ang 3 Z4 = k0204 : 25 = k0305.

04 = exp(02); and 05 = exp(-03).

We thus have two equations and two unknowns A and B.

For A: from Eq.(E.2)
A= (Z3 - ZZB)/Z1 (E.4)

Determination of B is more complicated due to the quartic nature of Fq.(E.3).
Combining Eqs.(E.3) and (E.4), and performing a series of algebraic
manipulations, we obtain

4 3 2 2 4 _
B'+47,.,B +621ZB +(4Z12-Z]3)B+(Z]2—Z]4)—0 (E.5)

12
where 7. =7 /(045)' 7, =1 /(045) :

6 ~ia/(U3h I; =L5/(0,5) 3
g “05/04-5p/ 0y Iy =L/ *T, [0, 3

- . - 4 .
L. =1 +1 26/21’ Z11_(Tw/04) -Z3ZG/Z1 H

10°47%%
2,210/ la;  Z1.2L,/(Z0)Y
12709/ 2gs L1371/ {Zg) " 5

- a4
2147117/ (Zg)
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There are four roots for B ; since we do not know a priori which root is the
physically relevent one, we list all four solutions here :

By=-Zyp-1-51=55753} 3 Bp-Zyp-{-5y#5,+5
By=-Z1p=1 Sq=S5%531 ;5 By==Zyp={ Sq+3,-S3
V2, g /2 g /2

where s]—w o=Wy" " 3 3 '

The terms w1, etc., are in turn obtained to be :

N] = M+N;
My = =(M + N)/2 + §(3)/2m - w2
Wy = =0+ N)/2 - 1(3) /20 - Ny/2

M= -Ey2 + (E)/AV3 5 w= ez - £V,

and
E.=-22./68 3 E = -(Zy, 2y - Z,)/8
a 13 ’ b 12 13 14 *
= 3 2
E.=(Ey/3)°+(E/2)
For Ec < 0, an alternative expression for the three roots are :

(- or +) 2 (-E /3)”2 cos (8/3) ;

W. =
1
Wy = (- or+) 2 (-E /3) cos (e/3 +120) ;
w3 = (- or +) 2 (-E /3) 2 cos (/3 +240) ;
where

@ = arc cos ([Ea/4}/{-Eg/27}]]/2) and the - or + sign is
for Ea + 0, or Ea « 0, respectively.
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As an example, for the conditions used in the verification runs (with ambient
temperature of 600 K, emissivity of 0.7 and shape factor of unity as
additional conditions), we obtain: A = - 0.078; B = 72.89.

As stated in the main text, the GSF computer results agree very well with this

analytic solution.
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Figure 1. Packed Bed Geometry (Schematic).
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Log of rate (mol/m3-S)
()

1/T X 1000 (1/K)

Figure 2. Reaction Rates in Packed Beds for SP and AS Models. Reaction 1:
CcO+0, = COZ; 2% C+C02 <=> 2C0; 3: C+H20 <=> CO+H2;
4: CO+H,0 <=> CO,+Hy; 5: C+0p => CO+CO5 7 dp=0.025 m;
G=1 mol}mz-s.
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Figure 3. Particle Size Changes for SP and AS Models (Assuming Constant
Bed Density).
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Figure 4.
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Figure 5. Effect of SP and AS Models on Carbon-Oxidation Rates.
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Figure 7. Comparison between Analytic Solution and GSF Calculatio
One-dimensional Steady Flow inside a Packed Bed (Case 1?? for
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Figure 8. Comparison between Analytic Solution and GSF Calculations for
One-dimensional Concentration Wave inside a Packed Bed (Case 2:
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Figure 9. Comparison between Analytic'SOIution and GSF Calculations for
One-dimensional Thermal Wave inside a Packed Bed (Case 3: t=4500

sec).
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Figure 10. Comparison between Analytic Solution and GSF Calculations for
One-dimensional Flow with Wall Heat Transfer inside a Packed
Bed : with and without Radiation at Exit. (Case 4.)
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Figqure 11. Comparison between Analytic Solution and GSF Calculations for
Gas and Solid Distributions for a One-dimensional Catalytic

Regeneration Flow (Case 5: t=427 sec).
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Figure 12. Comparison between Analytic Solution and GSF Calculations for
Temperature Distribution in the Reaction Zone of a

One-dimensional catalytic Regeneration Flow (Case 5: t=427
sec).
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Comparison between Analytic Solution and GSF Calculations for
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Temperature Distribution in a Non-isotropic Bed for
Two-dimensional Flow with Wall Heat Transfer (Case 6).
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Figure 14. Comparisons between Analytic Solution and GSF Calculations for
One-dimensional Gasification Flow inside a Packed Bed (Case 7).
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Figure 15. Product Gas Changes during Gasification of a One-dimensional
Packed Bed with Mid-point Water Inj eqtion.
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One-dimensional Packed Bed with Mid-point Water Injection.

-94-



| l 1

10 mole/m? - sec

D/Deo
<)
)
|

0.1 mol/m? - sec

04
0.2 —
0 | |
0 500 1000 1500 2000
Time (sec)

Figure 17. Drying-rate History for Three Flow Rates (Wall-Drying Problem).
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Figure 18. Drying Rate vs. Flow Rate (Wall-Drying Problem).
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Figure 19. pistribution of Drying Rates along Bed for Three Flow Rate
(Wall-Drying Problem) .
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Figure B.2. Variations of Effective Mass-Dispersion Coefficients with
Temperature.
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Figure C.1. Two-dimensional Mesh Geometry.
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Figure D.1. Physico-chemical Processes at UCG Cavity Wall.
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